
Probfuscation: An Obfuscation Approach using
Probabilistic Control Flows

Andre Pawlowski, Moritz Contag, and Thorsten Holz

Horst Görtz Institute (HGI), Ruhr-University Bochum, Germany

Abstract. Sensitive parts of a program, such as proprietary algorithms
or licensing information, are often protected with the help of code ob-
fuscation techniques. Many obfuscation schemes transform the control
flow of the protected program. Typically, the control flow of obfuscated
programs is deterministic, i. e., recorded execution traces do not differ
for multiple executions using the same input values. An adversary can
take advantage of this behavior and create multiple traces to perform
analyses on the target program in order to deobfuscate it.
In this paper, we introduce an obfuscation approach which yields prob-
abilistic control flow within a given method. That is, for the same in-
put values, multiple execution traces differ, whilst preserving semantics.
This effectively renders analyses relying on multiple traces impractical.
We have implemented a prototype and applied it to multiple different
programs. Our experimental results show that our approach can be used
effectively to ensure divergent traces for the same input values and it can
significantly improve the resilience against dynamic analysis.

1 Introduction

Obfuscation (lat. obfuscare = darken) is the art of disguising a given system such
that the analysis becomes harder. In the area of software engineering, obfusca-
tion can be used on either the source code or binary level to obscure the code or
data flow. Generally speaking, the goal is to hamper reverse engineering. Code
obfuscation plays an important role in practice and such techniques are widely
used. On the one hand, obfuscation techniques can be used to protect programs
from reverse engineering or to at least increase the costs for such an analysis. Ex-
amples include protection systems for sensitive parts or proprietary algorithms
of a given program, or digital rights management systems that contain licensing
information. On the other hand, obfuscation is widely used by attackers to im-
pede analysis of malicious software such that antivirus companies have a harder
time to analyze new samples. As a result, many different kinds of obfuscation
techniques were proposed in the last years (e. g., [6,10,13,15]). Note that all ob-
fuscation techniques have one constraint in common: the transformations used
to obfuscate the program must ensure that the semantic meaning of the program
is not changed.

Current state-of-the-art obfuscation techniques translate the target program’s
code into custom bytecode [17, 22]. This bytecode is generated specifically for

2 Andre Pawlowski, Moritz Contag, and Thorsten Holz

the obfuscated program and an interpreter is embedded which handles execu-
tion of said bytecode. When analyzed statically, the translation to an unknown
instruction set forces an analyst to examine the bytecode interpreter first, before
actually reverse engineering the original algorithm. Because obfuscation schemes
are often difficult to analyze statically, most deobfuscation approaches make use
of dynamic analysis [7, 21, 25]. A drawback of current obfuscation techniques is
the fact that the control flow does not differ for multiple program executions
when using the same input values. Thus, it is easier for an analyst to monitor
control flow, which exposes parts of the semantic of the target program. Note
that state-of-the-art deobfuscation tools utilize a dynamic trace of the program
to reconstruct an unobfuscated version of the program.

In this paper, we propose a novel obfuscation approach that tackles the afore-
mentioned problem. Our obfuscation scheme is constructed in such a way that
multiple traces of the same function with the same input values lead to different
observed control flows, whilst preserving semantics. Our approach is inspired by
the idea of Collberg et al. [5], which uses opaque predicates manufactured using
a specifically crafted graph data structure. However, their technique is based on
a problem that is only difficult to tackle when the attacker is limited to static
analysis. Hence, if an analyst employs dynamic analyses, she can easily deter-
mine the value of an opaque predicate which has been executed in the recorded
trace.

In an empirical evaluation, we show that our proposed obfuscation approach
successfully introduces probabilism to the control flow of the target program.
Thus, it thwarts dynamic analysis operating on multiple executions of the pro-
tected program significantly and does not focus solely on static analysis like
other state-of-the-art obfuscation approaches [6, 13,17,22].

In summary, we make the following contributions:

– We present a novel obfuscation scheme that introduces probabilistic con-
trol flow, but still ensures that the code’s semantics are preserved. Due the
probabilistic nature of our scheme, it can withstand proposed deobfuscation
approaches that rely on a trace-based analysis of several execution runs.

– We implemented a proof-of-concept obfuscation tool for the managed code
programming language C#. The tool is freely available at https://github.
com/RUB-SysSec/Probfuscator.

– We evaluate the prototype and demonstrate that probabilistic obfuscation is
a viable obfuscation technique to protect sensitive parts of a given program.

2 Technical Background

The transformations applied by the obfuscation process aim to hide the pro-
gram’s semantics. If successful, the analysis and deobfuscation effort is consider-
ably higher than feasible for an analyst. In the following, we refer to an analyst
as adversary.

Probfuscation: An Obfuscation Approach using Probabilistic Control Flows 3

The main class of obfuscation schemes, as well as ours, target the control flow
of the target program since it contains vital information about the general struc-
ture of a program and exposes high-level constructs such as loops or if-clauses.
Doing so, these obfuscation schemes thwart attempts to statically analyze the
target program. One building block used by said schemes is the construct of
opaque predicates [5]. An opaque predicate is a boolean expression whose value
is known at obfuscation time. However, its value is difficult to infer by an (auto-
mated) attacker. Collberg et al. introduce three types of opaque predicates which
we will refer to as true opaque predicates, false opaque predicates, and random
opaque predicates, whose expressions evaluate to the boolean values true, false
or evaluate randomly to either, respectively [5]. In the following, we will denote
by (always) taken branch the branch of an opaque predicate which is known to
be always taken.

In case of a true opaque predicate, its taken branch will always be taken, as
it corresponds to the predicate evaluating to true. Its other branch also has to
point to meaningful code, though, and points to a block of dead code. Preferably,
from the obfuscator’s point of view, it should be difficult to distinguish dead
from live code. False opaque predicates operate analogously. Random opaque
predicates differ in that their expression yields a random value and both branches
may be taken. Consequently, the code blocks the branches point to have to
be semantically equivalent for the obfuscation to be semantics-preserving. A
resilient random opaque predicate aims to hide this fact by employing several
transformations on the blocks to make comparison of their semantics infeasible.

Attacks against opaque predicates make use of data flow analysis and try to
prove that the expression the predicate checks in fact constant. More resilient
opaque predicates hence build expressions involving pointer aliases by making
use of the hardness of the intraprocedural may-alias analysis problem [20]. This
problem states that it is generally undecidable if two given pointers into a com-
plex data structure alias each other, i. e., point to the same location in the
structure. While algorithms that tackle the problem do exist, many of them are
incapable of handling special cases like recursive or cyclic data structures [5].

3 Adversary Model

The goal of the adversary is to analyze and understand a protected algorithm
inside the obfuscated method (e. g., a serial key check algorithm or a propri-
etary algorithm embedded in the method). To this end, the adversary has to
understand the effect of the input values on the program’s observable behavior,
among others. We assume an adversary that bases her deobfuscation attempts
solely on dynamic analysis techniques, a common attacker model found in recent
literature on attacks against obfuscation schemes [7, 21,25].

The adversary is able to record multiple traces of the obfuscated method
for any inputs as well as set breakpoints on specific points in the control flow.
Note that deobfuscation with the help of static analysis is already tackled by
obfuscation techniques [1,5,20,23] proposed previously, which are orthogonal to

4 Andre Pawlowski, Moritz Contag, and Thorsten Holz

Program Class Method

1) Adding
Properties

class Bar {
/*...*/

class Bar: Ione, Itwo, /*...*/ {
/*..*/

2) Graph
Generation

3) Adding
Initialization Code

6) Injecting
Opaque Predicates

7) Generating
Dead Code

8) Transforming
Basic Blocks

public void foo {
 iNode ptr = this.graph; /*...*/
 int a = 4; /*...*/

public void foo {
 int a = 4; /*...*/

... dead

dead
a
b
c

d

b

a

c

MethodMethodMethod

Method

4) Linking
Basic Blocks

5) Transforming
Control Flow

Method

deadb

a

b

a

Fig. 1. The eight steps of the obfuscation process. On the top, it is noted which entity
is targeted by the current obfuscation step.

our approach. However, the adversary is subject to time constraints in her anal-
ysis. Since modern programs change their protection implementations with the
release of new versions (e. g., anti-cheat systems, [14]) and recent deobfuscation
approaches work solely on execution traces [7,21,25], we deem these assumptions
reasonable.

4 Approach

Our approach makes use of an artificial graph, called obfuscation graph, whose
nodes consist of objects of classes provided by the target program. Each protected
method in the target program holds a pointer to the graph, linking both together.
Each basic block of the protected method is linked to one or multiple nodes in the
obfuscation graph. During the execution of the protected method, the pointer to
the obfuscation graph is moved from node to node. The obfuscation only forwards
the pointer to nodes linked to the basic blocks which are to be executed next.
With the help of opaque predicates, the scheme ensures that tampering with the
link most likely results in a crash of the program.

The obfuscation scheme consists of eight steps which are illustrated in Fig-
ure 1 and shortly described in the following.

1. Adding properties. The scheme uses properties of the nodes in the obfusca-
tion graph for opaque predicates. In order to increase the number of possible
opaque predicates, additional properties are added to the nodes.

2. Generating the obfuscation graph. The obfuscator then builds the obfusca-
tion graph with the help of the properties. It is then added to the class that
contains the method that should be protected.

3. Adding initialization code. This step adds additional logic to initialize the
obfuscation scheme for all methods that are to be protected.

Probfuscation: An Obfuscation Approach using Probabilistic Control Flows 5

4. Linking basic blocks. The basic blocks of the control flow graph (CFG) are
linked to the nodes of the obfuscation graph. This connection is needed to
ensure correct evaluation of the boolean expressions of the opaque predicates.

5. Transforming control flow. The CFG of the method is transformed with
the help of the linked obfuscation graph in such a way that multiple paths
through the CFG yield the same output.

6. Injecting opaque predicates. Opaque predicates are injected that only eval-
uate correctly if the pointer to the obfuscation graph points to the correct
location during the execution.

7. Generating dead code. Dead basic blocks added during the insertion of
opaque predicates are filled with artificially created code.

8. Transforming basic blocks. The basic blocks themselves are transformed to
obfuscate the method’s original code.

In the following, the eight steps are described in detail.

Adding Properties. In order to provide a diverse range of opaque predicates
for the same node, the nodes should either have a large number of properties
or a property which allows a wide range of different states. Note that all nodes
in the obfuscation graph have to implement the same properties, which may
be uncommon for a set of entities in non-obfuscated applications. Therefore, the
obfuscator adds a set of random properties to all possible nodes of the obfuscation
graph (i. e., to all classes, as a node is an object of a class). However, the random
properties use different states.

For our obfuscation approach, a property can be anything that can be added
to all nodes of the obfuscation graph and can hold different states, so that boolean
expressions for opaque predicates can be built. For example, common attributes
or metadata of a class, like implemented interfaces, can be used. The state of an
interface would be a boolean variable indicating whether the class implements
the interface.

Generating the Obfuscation Graph. The obfuscation graph is embedded
into the class that contains the method(s) that should be protected. If multiple
methods of the same class should be protected, the same obfuscation graph can
be used multiple times. The nodes of the graph consist of objects of different
classes of the target program. Hence, every node is related to a specific class
of the program and therefore has different states for the added properties. The
graph is a tree-like graph structure where the leaf nodes have back-edges to the
root of the “tree” (semi-cyclic structure).

The structure of the obfuscation graph allows traversal on multiple paths.
The obfuscator chooses random paths through the obfuscation graph and de-
clares them to be vpaths (as in valid paths). The number of vpaths is given by
the user. An example for an obfuscation graph is shown in Figure 2. Classes are
randomly assigned to the nodes of the graph. The property states of the nodes
on the vpaths are later used to build opaque predicates.

6 Andre Pawlowski, Moritz Contag, and Thorsten Holz

N1

N2 N3

N4 N5 N6 N7

Object: class A
Property states: p=1, q=2, r=3

Object: class C
Property states: p=1, q=1, r=1

Object: class D
Property states: p=3, q=2, r=3

Object: random class
Property states: random

Non-vpath

Object Details

vpath

Fig. 2. An example obfuscation graph with one vpath highlighted in red. All classes
for the nodes are picked randomly by the obfuscator. The classes and properties that
are used for the nodes on the vpath are used to build opaque predicates.

The obfuscation graph is parametrized by its depth and dimension. The depth
specifies the maximum length of a path whereas the dimension specifies the
number of children of each node. These parameters can be chosen arbitrarily
and determine the obfuscation graph’s layout. A detailed evaluation about the
effect of chosen parameters is given in Section 6.1.

Adding Initialization Code. Because the opaque predicates use properties
of the nodes on the vpaths, each method to protect needs a pointer into the
obfuscation graph. In order to be consistent between executions, the pointer has
to point to the same starting point each time. Therefore, in the beginning of the
method, the pointer is reset to the root node of the graph. This pointer realizes
the link between executed basic blocks and the nodes in the obfuscation graph.

Obviously, a single vpath can be easily monitored by an adversary using
dynamic analysis. Thus, at least two distinct vpaths have to exist in the graph.
Probabilistic control flow can then be ensured by letting the obfuscated method
determine randomly at runtime which vpath is used. Therefore, a vpath state is
added to each method which determines the vpath used in current transition. It
is initialized randomly in the beginning of the method at runtime.

Linking Basic Blocks. The nodes on the vpaths are linked to basic blocks
in the CFG. Detailed information about the links are used later in the obfusca-
tion process to transform the control flow of the method and to build opaque
predicates (e. g., the properties used to construct the opaque predicates). This
information is only needed during the obfuscation process. During execution of
the method, only the states of the properties are used with the help of opaque
predicates to position the pointer into the obfuscation graph. The detailed in-
formation is merely kept at obfuscation time.

Probfuscation: An Obfuscation Approach using Probabilistic Control Flows 7

N1

N2 N3

N4 N5 N6 N7 BB8

BB6

BB5

BB7

BB4

Obfuscation Graph CFGNon-vpath

vpath

Branch

Link to
Node

Fig. 3. An example relation between the obfuscation graph and the method’s control
flow. On the right side, a part of the control flow graph is shown. On the left side,
the obfuscation graph is shown, where the vpath is highlighted in red. The relation
between the nodes of the vpath and the basic blocks is highlighted in green.

An example relation of the obfuscation graph and the CFG of the method
to protect is shown in Figure 3. The obfuscator links the first basic block of
the CFG to the root node of the obfuscation graph (where the first block is the
one executed first once the method is called). This is the initial position of the
pointer into the graph, which is set by the initialization code added previously.
The algorithm then iterates over all remaining basic blocks of the CFG and links
each basic block to a node on the vpath of the obfuscation graph. During this
process, the obfuscator checks for each basic block which node the preceding
block is linked to. It then decides randomly to link the current processed basic
block to the same node or to the next node on the vpath. This is done for each
vpath the obfuscation graph possesses. Hence, each basic block has a link to one
node of each vpath. The algorithm terminates when all basic blocks are linked
to a node of the obfuscation graph.

Transforming Control Flow. The outgoing branches of each basic block are
processed exactly once. In the following, we describe the control flow transfor-
mation process on the basis of the example shown in Figure 4:

1. Each basic block has a link to one node in every vpath. The vpath state
(introduced to the protected method while adding the initialization code)
determines which of the vpaths is currently active during execution. In or-
der to divert the control flow depending on the currently used vpath, logic
must be added that switches the control flow accordingly. Hence, the obfus-
cator replaces the branch of basic block A to B with one branch for every

8 Andre Pawlowski, Moritz Contag, and Thorsten Holz

B

A

B

A

B

A

B'

1) Add switch logic

Here: duplicate
target basic block

2) Duplicate or
select random equal

target basic block

3) Add pointer
move logic to
each branch

Here: two
vpaths

„vpath: 1“ „vpath: 2“
„vpath: 1“ „vpath: 2“

Here: only needed
for „vpath 2“

B

A

B'

„vpath: 1“

move

„vpath: 2“

„vpath: 2“

4) Add logic to switch
the used vpath
randomly or not

Fig. 4. The control flow transformation process operating on two consecutive basic
blocks A and B. The target of the transformation is highlighted in red. The caption
“vpath: X” denotes the control flow path corresponding to the respective vpath in the
obfuscation graph.

existing vpath (in this example there are two vpaths). At runtime, the branch
corresponding to the vpath state is taken.

2. In order to avoid all of these new branches having the same target basic block,
the obfuscator either duplicates the target basic block or randomly chooses a
semantically equivalent basic block. The list of semantically equivalent basic
blocks consists of the target basic block itself and all duplicates of this basic
block. In this example, the basic block B is duplicated and the new basic
block B’ is executed when vpath 2 is currently active.

3. The source basic block of a branch and the target basic block may be linked
to different nodes on the vpath. Hence, the pointer into the obfuscation graph
has to be moved from the node the source basic block is linked to to the node
the target basic block is linked to (compare Figure 3). As depicted in our
example, basic block B is linked to the same node on vpath 1 as basic block
A, but basic block B’ is not linked to the same node on vpath 2 as A. Thus,
a move block has to be inserted in between A and B’. Said block moves the
pointer into the obfuscation graph to point to the node B’ is linked to.

4. The current approach would not yield probabilistic control flow at all, as the
vpath state is only set once in the initialization code of a method. Hence,
for each outgoing branch of a basic block, logic may be added (determined
during the obfuscation process) that may switch the vpath the method cur-
rently follows. The switching decision is made at runtime and at random. If
switching occurs, the pointer into the graph has to be moved according to
the chosen vpath.

Injecting Opaque Predicates. In this step of the obfuscation process, the
obfuscator adds opaque predicates to the method that should be protected. For
each basic block, the obfuscator randomly decides whether to inject an opaque
predicate into the incoming branch. If an opaque predicate is injected, the ob-
fuscator randomly decides to either create a true, false, or random opaque pred-
icate. For the true and false opaque predicates, the never taken branch points
to a newly created basic block that is marked as dead.

Probfuscation: An Obfuscation Approach using Probabilistic Control Flows 9

During the execution, the method’s pointer into the obfuscation graph has
to point to the exact node in the active vpath that is linked to the currently
executed basic block. For each opaque predicate, the properties that are given by
this node are used for its boolean expression. For example, with the obfuscation
graph in Figure 2, the obfuscator can build a true opaque predicate for a basic
block that is linked to node N1 with the boolean expression q == 2. Note that
this boolean expression is not unique to this node in the obfuscation graph, since
it is also fulfilled by node N7 (and probably by other nodes that do not reside
on the vpath). This design decision was made to ensure that an attacker is not
able to distinctively connect the opaque predicate to a node in the obfuscation
graph. Even if the focus of our approach lies on dynamic analysis, the obfuscation
scheme should withstand a shallow static analysis.

Furthermore, true and false opaque predicates are deterministic and do not
contribute to the probabilism of the control flow. But since the attacker is allowed
to conduct a manual dynamic analysis and change the program state during the
execution, it adds a tamper proofing mechanism: if the attacker changes the
pointer to the obfuscation graph or the obfuscation graph itself in order to affect
execution, one of the following opaque predicates would divert the control flow
and with a high probability crash the program. This is an advantage over a solely
use of random opaque predicates to create probabilistic control flow.

Generating Dead Code. Basic blocks marked as dead are filled with artifi-
cially generated code. During this process the obfuscator randomly chooses the
terminating instruction (called exit) of the dead basic block. If the chosen exit is
a branch, the target can either be an arbitrary (existing) basic block in the CFG
or a new dead basic block. If the target is a new dead basic block, the process is
repeated. Otherwise, if the target is an existing basic block, the interconnectivity
of the method’s CFG is increased.

Transforming Basic Blocks. The transformation of basic blocks is necessary
because the algorithm duplicated basic blocks during the control flow transfor-
mation step. If no transformation was applied, a pattern matching of basic blocks
could be sufficient to detect the always taken branch of an opaque predicate.

In order to make semantically equivalent blocks harder to detect, the obfus-
cator employs standard obfuscation techniques [4]. We focus on those affecting
control flow (like splitting blocks or outsourcing the last instructions to a com-
mon block for a subset of blocks), but other techniques can be applied as well.
This includes instruction re-ordering, replacement of instruction sequences with
equal ones, or usage of opaque expressions.

5 Implementation

Our prototype obfuscator is written in C# and targets .NET programs. It uses the
CCI Metadata libraries [11] in order to transform the target program. For now,

10 Andre Pawlowski, Moritz Contag, and Thorsten Holz

the prototype of our obfuscation scheme operates on the bytecode of individual
methods a user wishes to protect. In general, however, the approach is not limited
to bytecode or methods only (or managed code programming languages). As
mentioned in Section 4, the user chooses the method(s) he wants to protect.
Note that typically only a very small number of methods in a given software
project contain sensitive and valuable information that need to be protected.

All random numbers that are required during the obfuscation process are
fetched from the same pseudo random number generator (PRNG). Hence, the
seed of the PRNG can be used as a key for the obfuscation. This means the same
seed used for the same target method results in the same obfuscated output. In
the following, we describe specifics of our implementation.

5.1 Probabilistic Control Flow

The vpath through the obfuscation graph that is used for the current run is
randomly determined during execution of the protected method. This random-
ness is used to implement non-deterministic control flow. We stress that these
random numbers are created during the execution of the obfuscated method and
not during the obfuscation process.

In our prototype implementation, the random number generator of the .NET
System namespace is used. This implementation is sufficient for our proof-of-
concept tool, but not for a real-world application. An attacker can potentially
determine the points in the control flow which generates random numbers and
replace them with fixed values. A detailed discussion about the random number
generation during the execution of the obfuscated method is given in Section 7.

6 Evaluation

In this section, the prototype of our proposed obfuscation technique is evalu-
ated. Since it is hard to evaluate obfuscation techniques in general, we do our
best to evaluate it as thoroughly as possible using the four aspects proposed
by Collberg et al. [5]: cost, resilience, potency, and stealth. Cost gives a mea-
surement of the time and space overhead that is induced by the obfuscation
technique. Resilience measures how well the protected program resists deobfus-
cation attempts. Potency measures how complex the program has become after
the obfuscation process. Stealth measures how well the obfuscation blends into
the original program.

Since our obfuscation is parametrized, we evaluate the effect of the param-
eters on the obfuscation first. Afterwards, cost, resilience, potency, and stealth
are measured.

6.1 Obfuscator Parameters

The obfuscation graph is the only component of the obfuscation scheme that is
memory dependent. Its size is mainly characterized by its depth and dimension.

Probfuscation: An Obfuscation Approach using Probabilistic Control Flows 11

Table 1. Relation between the number of vpaths and the size of the obfuscated method.

vpaths Basic Blocks Growth Factor Branches Growth Factor

4 2,520 504 3,059 611.8
5 5,963 1192.6 7,272 1454.4
6 15,418 3083.6 18,804 3760.8
7 26,215 5243 31,848 6369.6

Table 2. Size of the obfuscation graph and its dependency to the graph’s depth and
dimension.

Depth Dim. |Nodes| Depth Dim. |Nodes| Depth Dim. |Nodes|
6 4 1,365 7 4 5,461 8 4 21,845
6 5 3,906 7 5 19,531 8 5 97,656
6 6 9,331 7 6 55,987 8 6 335,923

Each node of the graph is represented by an object of a class in the target
program and incurs an overhead dependent on the classes that are instantiated.
Table 2 shows the size of the obfuscation graph for a range of parameters.

The length of the vpath is determined by the depth of the obfuscation graph.
The number of vpaths affects the number of possible control flows of the method
for the same input and thus influences the method’s size as well. The effect
of multiple possible control flows is further evaluated in Section 6.3. Table 1
shows the outcome of the obfuscation process for different numbers of vpaths
for the same example method. The original method’s CFG consists of five basic
blocks and five edges. As evident from the table, the growth of the method’s size
proceeds exponentially.

While larger values for the parameters yield better protection levels, one has
to weigh up the desired protection level with penalties in terms of size and speed.
These penalties are evaluated in detail in Section 6.2.

6.2 Measuring Cost

In order to evaluate the cost of the obfuscation scheme on the program, we
measure its performance, file size, and memory consumption during execution.
These values are compared to the execution of the original, unobfuscated pro-
gram. The tests were run on an Intel Core i7 870 CPU with 2.93 GHz using
Windows 8.1 as operating system (OS). We set the number of vpaths through
the obfuscation graph to six, the depth of the obfuscation graph to seven, and
the dimension of the obfuscation graph to five. The chosen numbers provide
a balance between the penalty introduced by the obfuscation scheme and the
protection level that is provided, as described in Section 6.1. Since obfuscation
introduces a performance overhead and is therefore usually only used to protect
important parts of the program, we evaluate our approach only on the imple-
mentation of certain algorithms (representative of any intellectual property one
wishes to protect). Because of its nested loop structure and variable input length,

12 Andre Pawlowski, Moritz Contag, and Thorsten Holz

we deem the SHA-256 hash computation as best suited to represent a worst case
for our obfuscation scheme in terms of performance penalties. The nested loop
structure increases the effect of the probabilistic control flow and therefore slows
down the computation. In the following, we describe this test case in detail. The
evaluation of additional test cases can be found in our technical report [18].

Size. To quantify the impact of our obfuscation scheme on the file size, we
measure the file size in bytes. In our setting, the size of the original binary is
12,288 bytes and the obfuscated binary has a file size of 7,666,688 bytes. This
implies that the obfuscated binary is about 624 times larger than the original
binary. This result is similar to the other test cases in the corresponding techni-
cal report [18]. Note that, as discussed in Section 6.1, the size of the obfuscated
binary highly depends on the parameters chosen for the obfuscator. In order to
ensure a variety of possible control flows, the obfuscator has to clone the basic
blocks of the target method multiple times. Therefore, our obfuscation scheme
also increases the size of the target method multiple times. We stress that the
growth of the size is dependent on the target method and not on the entire
program. A large program has the same growth as a small program if they im-
plement the same method that is the target of the obfuscation. Nevertheless, due
to the resources available to modern devices, we see this growth as acceptable.

Performance. The performance is measured by calculating the SHA-256 hash
of a 10 MB file. In order to compensate for outliers, we repeat the calculation
1000 times and calculate the average time. We take two different timings. First,
the time needed for the creation of an object of the obfuscated class, and second
the time needed for the actual computation of the hash is measured. During the
creation of the object itself, the obfuscation graph is built by the constructor of
the class. The creation of the obfuscation graph impacts the overall performance
depending on the parameters specified by the user. Therefore, we also have to
take timings for the creation and not only for the actual computation. Timings
are measured with a resolution of 1 ms.

The original binary takes less than 1 ms for object creation. The obfus-
cated binary takes 3925 ms to create the object (and therefore to build the
obfuscation graph). The calculation of the hash is performed in 785 ms by the
original binary, whereas 5658 ms are needed by the obfuscated binary. While
the obfuscated SHA-256 algorithm takes around 7 times longer to perform the
same calculation, we stress that this case constitutes a worst case scenario for
our obfuscation scheme in terms of performance. The other tested algorithms
in our technical report [18] need roughly the same time to create the object,
but only need around 1.6 times longer to perform the same calculation. Again,
these values are dependent on the parameters of the obfuscation graph. While
parameters exists for which obfuscation graph creation consumes less time, the
protection level for the obfuscated method is lowered as well. Additionally, al-
gorithms that are usually protected with obfuscation in real-world applications
are sparsely performed during the execution of a program. Therefore, we regard
the introduced performance penalty as acceptable.

Probfuscation: An Obfuscation Approach using Probabilistic Control Flows 13

Memory. The only memory dependent component of the proposed obfuscation
technique is the obfuscation graph. Therefore, the memory consumption of the
graph is measured after the object of the protected class is created in the pro-
gram. The parameters yield an obfuscation graph with 19,531 nodes. The original
program consumes 1,480 kB of memory after the object is created. The protected
program needs 28,852 kB after the target object is allocated. Therefore, the ob-
fuscation graph needs about 27,372 kB for the used parameters. This is similar
to the memory consumption of the other test cases in our technical report [18].
Note that the memory required for one obfuscation graph is constant. Larger
applications embedding the same obfuscation graph will face the same mem-
ory requirements. Having the resources available on today’s devices in mind, we
believe the impact on memory consumption to be tolerable.

6.3 Measuring Resilience

Resilience measures the resistance of the obfuscation scheme against deobfusca-
tion attempts. Since we focus on thwarting dynamic analyses, we measure the
resilience of our obfuscation scheme by quantifying the probabilistic control flow.
Therefore, we trace the execution of an obfuscated method with the same input
values and compare the similarity of these traces. To this end, we generate a
graph from the traced basic blocks in the obfuscated method and compute the
graph-edit distance between two execution traces using the algorithm proposed
by Hu et al. [12]. The graph-edit distance yields the number of edits needed to
transform one graph into another graph. Edits are node insertions/deletions and
edge insertions/deletions.

We follow the proposal of Chan et al. [2] and normalize the graph-edit dis-
tance such that it computes a similarity score using the following formula:

similarity(G1, G2) = 1−
(

graph-edit distance

|G1|+ |G2|

)
,

where the size of the graph Gi is given by the total number of nodes and
edges and is denoted by |Gi|. The output of the similarity function is a value
between 0.0 and 1.0. A result of 1.0 means that the two graphs are identical,
whereas a result of 0.0 means they are completely different.

Results. As test case we use our running example, the SHA-256 hash compu-
tation. We generated 100 traces by executing the program 100 times in a row
with the same input. Since the graph-edit distance calculation is NP-hard in
general [26], we have to choose an input size that creates traces with graph di-
mensions that are still comparable. To this end, we used 100 bytes of random
data. Since the SHA-256 hash computation operates on blocks of 512 bits, the
algorithm runs through multiple iterations until it terminates. As obfuscation
parameters we use the settings evaluated in Section 6.2.

In total, we calculated 4,950 graph comparisons (as graph comparison is
commutative). The greatest similarity of two traces was 88.45%. The smallest

14 Andre Pawlowski, Moritz Contag, and Thorsten Holz

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Similarity

0

200

400

600

800

1000

1200

Nu
m

be
r o

f T
ra

ce
s

Fig. 5. The 4,950 similarity values of the traces displayed as a histogram. The bin size
amounts to 0.05. The smallest similarity was 0.35 and the greatest 0.88. The majority
of the values have a similarity of under 0.75.

similarity was 35.29%, while the average of all similarities is 69.65%. An overview
of the similarity between the traces is given in Figure 5 as histogram. As can be
seen, most of the similarity values are near the calculated average value in the
range of 60% to 75%.

The smallest trace regarding the number of unique basic blocks visited 359
unique basic blocks and took 367 unique branches. The largest trace reached
1,183 unique basic blocks and took 1,255 unique branches. On average, 753
unique basic blocks were visited and 793 unique branches were taken by the
traces. The number of all visited unique basic blocks and taken unique branches
is given in Figure 6. As evident from the figure, the number of visited unique
basic blocks and taken unique branches correlate. If more unique basic blocks
were executed, more unique branches were used. But still, the number of basic
blocks and branches vary greatly between single executions. The size of the traces
of our other test cases is provided in the corresponding technical report [18].

These results show that multiple executions for the same input values do not
even once have the same execution path. This effectively hinders deobfuscation
approaches working on multiple traces, such as state-of-the-art deobfuscation
methods like [25]. Also, a manual analysis using breakpoints is rendered unreli-
able in presence of the probabilistic control flow, as we explain in Section 7.

6.4 Measuring Potency

Potency measures how complex and confusing the program becomes after ob-
fuscation. In order to evaluate the potency of our obfuscation scheme regarding
dynamic analysis, we measure the differences between the original and an ob-
fuscated control flow. Therefore, we recorded an execution trace for the original

Probfuscation: An Obfuscation Approach using Probabilistic Control Flows 15

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80 90

Unique Branches SHA-256
Unique Basic Blocks SHA-256

Fig. 6. The number of unique basic blocks and branches each trace used ordered by the
number of reached basic blocks. The gray + dots depict the used unique branches and
the black x dots show the visited unique basic blocks. On the x-axis the trace number
is given. On the y-axis the number of unique basic blocks/unique branches are given.

and obfuscated program with the same input. During the obfuscation process, all
semantically equivalent basic blocks were labeled in order to recognize them in
the obfuscated CFG. Note that this information is not available for an adversary
trying to analyze the obfuscated method.

In order to quantify the utilization of the different semantically equivalent
basic blocks we visited with respect to all available semantically equivalent basic
blocks and the number of executions, we make the following case distinction:

utilization =

{ |diff|
|exec| , if |exec| < |avail|
|diff|
|avail| , otherwise

,

where |exec| gives the number of times one of the semantically equivalent ba-
sic blocks were visited, |avail| gives the number of available semantically equiv-
alent basic blocks, and |diff| gives the number of visited different semantically
equivalent basic blocks. This way we can differentiate between cases where the
total number of visited semantically equivalent basic blocks is lower than the
available number of semantically equivalent basic blocks and vice versa. Con-
sider for example a case where only one of the available semantically equivalent
basic blocks is executed. If this is the case during multiple iterations of a loop,
its utilization of the available semantically equivalent basic blocks is obviously
not optimal because control flow visits only this available basic block multiple
times. On the other hand, utilization is good if the code contains no loop and
control flow visits only one of the semantically equivalent basic blocks during
the execution only one single time. Therefore, we have to differentiate.

16 Andre Pawlowski, Moritz Contag, and Thorsten Holz

Table 3. The results of the comparison of the obfuscated method trace with the trace
of the original method for the same input (ID = ID for semantically equivalent basic
blocks, |avail| = number of available semantically equivalent basic blocks, |exec| =
total number of times one of the semantically equivalent basic blocks were visited,
|diff | = number of different semantically equivalent basic blocks executed, Util =
utilization of the reached different semantically equivalent basic blocks with respect to
available semantically equivalent basic blocks and the total number of executions in
percent).

ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total

|avail| 9 43 40 30 35 24 22 20 29 18 22 31 25 22 43 23 33 469
|exec| 1 20 1 19 3 1 2 1 34 2 32 98 2 96 130 2 128 572
|diff| 1 10 1 8 3 1 2 1 15 1 10 4 1 4 24 2 20 108
Util 100 50 100 42.1 100 100 100 100 51.7 50 45.5 12.9 50 18.2 55.8 100 60.6 71

Results. As input data we used 100 bytes of random data and as obfuscation
parameters we use the settings evaluated in Section 6.2. We recorded a trace
by executing the obfuscated and original program with the same input. The
resulting traces were compared with respect to their executed basic blocks.

The obfuscator cloned the basic blocks of the original method multiple times
during the obfuscation process. Remember that the decision to clone a basic
block is made randomly during the obfuscation process. The minimum number
of semantically equivalent basic blocks in the obfuscated method amounts to 9
and the maximum number to 43. On average, the control flow has 27 different
possibilities per basic block to exhibit the same behavior.

During the execution of the obfuscated method, the control flow has visited
572 relevant basic blocks that contribute to the calculation of the result. These
basic blocks consist of the basic blocks of the original method and transformed
copies of these original basic blocks. The utilization of the available semantically
equivalent basic blocks ranges from 12.9% to 100%. In total, 71% of the available
semantically equivalent basic blocks were utilized during the execution of the
obfuscated method. The results for our test case are shown in Table 3. All test
cases in our technical report [18] have similar results.

The results show that an execution of the obfuscated method uses a variety
of different but semantically equivalent basic blocks to compute its result. Hence,
the number of basic blocks that are actually involved in the computation has
been increased by our approach and with it the complexity of the control flow.

6.5 Measuring Stealth

Stealth measures the difficulty for an adversary to determine if the given method
is obfuscated, i. e., how well the obfuscated entity fits in legitimate code. Al-
though stealth is not an objective of our approach, we evaluate it for the sake of
completeness. Recently published obfuscation papers measure this aspect based
on the distribution of instructions [3, 19, 24]. However, as Collberg et al. [5]
describe it, stealth is a context-sensitive metric. Hence, instead of pursuing a

Probfuscation: An Obfuscation Approach using Probabilistic Control Flows 17

static approach for evaluating stealth, we consider the dynamic behavior of the
obfuscated program. This fits our general focus on dynamic analysis.

However, since our approach is, by design, supposed to yield different execu-
tion traces for the same input, stealth is inherently hard. An adversary only has
to execute the program two times with the same input and compare the recorded
execution traces. If they differ, the adversary can conclude that the program is
most likely protected by our obfuscation approach.

7 Discussion

In the following, we discuss potential limitations of our approach.

Dynamic Analysis. Our approach aims to transform methods such that mul-
tiple traces of the same function using the same inputs differ, which implies
that dynamic deobfuscation approaches are hampered [7,21]. Furthermore, this
is done to thwart dynamic analyses operating on multiple executions (like [25]).
For example, manual dynamic analysis of the obfuscated method is hindered by
probabilistic control flow: an adversary observing the control flow at some fixed
point during execution of the method cannot depend on the program reaching
the exactly same point during a following run. Hence, pausing execution using
breakpoints is rendered unreliable in presence of our obfuscation approach.

Single Trace Analysis. If an adversary knows that our obfuscation scheme is
used, the best way to attack it is by resorting to work on a single execution trace.
Since the goal of probabilistic control flow is to make dynamic analyses based
on multiple traces harder, deobfuscation methods operating on only one trace
are only affected if at least one loop is present. In this case, our scheme increases
the size of the recorded trace because the obfuscator clones basic blocks in order
to have multiple possible control flows to choose from. As shown in Section 6.4,
the execution of multiple iterations of a loop results in different semantically
equivalent basic blocks that are reached. Algorithms processing the recorded
trace dismiss basic blocks that do not affect the outcome of the method [7, 21,
25]. Since the visited semantically equivalent basic blocks of the probabilistic
control flow affect the outcome of the method, they can not be dismissed. As
a result, subsequent analysis of the recorded trace is more complicated due to
our obfuscation scheme. As future work, we propose to integrate the use of the
obfuscation graph into the calculations of the protected method. This way it gets
harder to dismiss instructions based on their usage of the obfuscation graph.

Furthermore, deobfuscation methods operating on only one trace do not per-
form as good in terms of code coverage compared to those using multiple execu-
tion paths. This poses a problem for an adversary who wants to analyze multiple
execution paths in an algorithmic manner in order to understand the obfuscated
program better. Often, multi-path exploration techniques are considered when
tackling this problem [21, 25]. This is where our approach proves useful: It in-
troduces a variety of valid, but distinct control flows and adds probabilism. For

18 Andre Pawlowski, Moritz Contag, and Thorsten Holz

the adversary, it is hard to distinguish whether a branch was taken due to prob-
abilistic control flow or because the function was run with different input. In
order to improve this aspect, we currently work on extending our approach by
merging the semantics of multiple methods into one method. The semantic that
is actually executed when the method is called is then determined with the help
of the obfuscation graph and opaque predicates. Therefore, the same method can
have multiple semantics and, depending on the vpath that is used, the correct
semantic of the method is chosen.

Probabilistic Control Flow. An important component of our proposed ap-
proach is the obfuscation graph with its vpaths. The vpaths are used to select the
current control flow through the obfuscated method and therefore to introduce
probabilistic control flow. Which vpath is to be used is decided by a random
value. In our prototype implementation, the used vpath is merely chosen using
the PRNG as provided by the .NET System namespace. This implementation is
obviously vulnerable, as the call to the PRNG could be replaced by the usage
of fixed values. As a result, the probabilistic control flow is then merely reduced
to a deterministic one.

A straightforward approach to make the random number generation more
resilient is not to use any external PRNG. Instead, one could build a PRNG into
the obfuscated method itself and replace the calls to the external PRNG with
code sequences that generate random numbers. This way, the random number
generation is harder to pinpoint by an adversary because the code that generates
the random number is concealed by the code of the obfuscated method. The
obfuscator is not limited to build only one PRNG into the obfuscated method
but could inject multiple ones to make it even harder to find the code sequences
that generate random numbers. Furthermore, the random number generation can
be protected by additional layers of obfuscation like translating the obfuscated
method to custom bytecode [1, 17,22].

However, even this construct suffers from the problem that it needs an initial
random seed to create different control flows every time it is executed. If an
adversary is able to set this initial random seed to a fixed value, the PRNG in
the obfuscated method generates the same sequence of random numbers every
time the program is executed. Even if the user input influences the calculation of
the random numbers, the program would only have different traces for different
inputs (which still hampers analysis of the program with different inputs, but
allows debugging of the function with the same input). This circumstance poses
the greatest limitation of our current implementation of the proposed obfuscation
scheme. However, due to their huge number, it is not easy in practice to detect
every single state that is fetched by a program from the OS or to set every
internal state of an OS every time to the exact same value in order to fix the seed.
One approach to circumvent fixed OS states would be using non-deterministic
sources like the intentional use of race-conditions. For future work, we propose
to develop methods to conceal the fetching of external states for the random
number generation.

Probfuscation: An Obfuscation Approach using Probabilistic Control Flows 19

8 Related Work

The basic technique our approach is based on is presented in a paper by Collberg
et al. [5]. They propose a method to create opaque constructs based on objects
and pointer aliases. Also, they suggest a directed graph as concrete data type.
However, their approach is mainly concerned with the creation of cheap, stealthy
and resilient opaque constructs. We specifically extend this approach and focus
on the different paths we can insert into a target using their construct. This
stems from the insight that while their technique efficiently makes static analysis
harder, the traces obtained using dynamic analyses are very much the same.
This, in turn, helps in determining the concrete value of an opaque predicate
and might allow to partly reconstruct the control flow of the program.

Wang et al. describe a technique to obfuscate a target program using control
flow transformations as well [23]. They transform a method’s CFG in such a way
that a new basic block in the beginning of the method decides which original
basic block is executed next. These control flow decisions are made based on a
state variable which gets updated after every basic block. Similar to the approach
of Collberg et al., they transform the control flow analysis problem into a data
flow analysis problem. However, their approach also merely aims to make static
analysis of an obfuscated program harder.

More recent work focuses on deobfuscation of obfuscated programs [7,21,25].
All of them have in common that they are based on dynamic analysis. Traces
of the program’s execution are recorded and subsequently used to remove the
applied obfuscation schemes. Approaches working on multiple traces in order to
tackle the code coverage problem [16] of dynamic analysis are challenged by the
probabilistic control flow introduced by our technique.

The recent work of Crane et al. also make use of probabilistic control flow [8].
It enables them to thwart cache side-channel attacks. To this end, they clone
program fragments and transform the clone in order to avoid making an exact
copy. A stub is used to decide randomly if the clone or the original fragment is
executed. Because an attacker has no knowledge about which was executed, it
hampers cache side-channel attacks. Additionally, Davi et al. [9] use probabilistic
control flow in combination with memory randomization in order to prevent
conventional return-oriented programming (ROP) and JIT (just-in-time)-ROP
attacks. To this end, they clone and diversify the code that is loaded into memory.
Whenever a function is called, their system randomly decides if the original or
cloned function is executed. Once the executed function returns, the system
checks if execution shall continue at the normal or cloned version of the function
caller by adding an offset to the return address. Therefore, an attacker is not able
to precisely predict where execution will resume and cannot reliably perform an
attack.

9 Conclusion

In this paper, we introduce a novel approach to obfuscate software, including,
but not limited to, those written in managed code programming languages. The

20 Andre Pawlowski, Moritz Contag, and Thorsten Holz

proposed scheme is based on a construct introduced by Collberg et al. [5]. How-
ever, instead of focusing on protecting the program against static analysis, we
introduce a scheme achieving probabilistic control flow, aiming to make dynamic
analysis harder. This is achieved by embedding an obfuscation graph containing
multiple vpaths. Based on these paths, opaque predicates are constructed and
added to the target method. Consequently, control flow may take different paths
exhibiting the same observable semantics.

We have implemented a prototype obfuscator for .NET applications and eval-
uated it using multiple programs. The experiments have shown that the obfus-
cated methods do not exhibit the same execution trace after executing it 100
times in a row with the same input. Inevitably, this comes with a significant
performance and memory penalty. Resilience against dynamic analyses thus has
to be weighed up with constraints on time and space. We are confident that the
overhead is still acceptable to protect sensitive parts or proprietary algorithms of
a given program. Since we believe our obfuscation approach provides a new strat-
egy for tackling dynamic analysis and hence a building block for future research,
we are making our obfuscation tool available to the research community.

References

1. Anckaert, B., Jakubowski, M., Venkatesan, R.: Proteus: Virtualization for Diver-
sified Tamper-Resistance. In: Proceedings of the ACM workshop on Digital rights
management (2006)

2. Chan, P.P., Collberg, C.: A Method to Evaluate CFG Comparison Algorithms. In:
International Conference on Quality Software (QSIC) (2014)

3. Chen, H., Yuan, L., Wu, X., Zang, B., Huang, B., Yew, P.c.: Control Flow Ob-
fuscation with Information Flow Tracking. In: Annual IEEE/ACM International
Symposium on Microarchitecture (2009)

4. Collberg, C., Thomborson, C., Low, D.: A Taxonomy of Obfuscating Transforma-
tions. Tech. rep., Department of Computer Science, The University of Auckland,
New Zealand (1997)

5. Collberg, C., Thomborson, C., Low, D.: Manufacturing Cheap, Resilient, and
Stealthy Opaque Constructs. In: ACM Symposium on Principles of Programming
Languages (POPL) (1998)

6. Collberg, Christian: The Tigress C Diversifier/Obfuscator. http://tigress.cs.

arizona.edu

7. Coogan, K., Lu, G., Debray, S.: Deobfuscation of Virtualization-obfuscated Soft-
ware: a Semantics-based Approach. In: ACM Conference on Computer and Com-
munications Security (CCS) (2011)

8. Crane, S., Homescu, A., Brunthaler, S., Larsen, P., Franz, M.: Thwarting Cache
Side-Channel Attacks Through Dynamic Software Diversity. In: Symposium on
Network and Distributed System Security (NDSS) (2015)

9. Davi, L., Liebchen, C., Sadeghi, A.R., Snow, K.Z., Monrose, F.: Isomeron: Code
Randomization Resilient to (Just-In-Time) Return-Oriented Programming. In:
Symposium on Network and Distributed System Security (NDSS) (2015)

10. Fang, H., Wu, Y., Wang, S., Huang, Y.: Multi-stage Binary Code Obfuscation
using Improved Virtual Machine. In: Information Security (2011)

Probfuscation: An Obfuscation Approach using Probabilistic Control Flows 21

11. Guy Smith: Common Compiler Infrastructure: Metadata API. https://

ccimetadata.codeplex.com/

12. Hu, X., Chiueh, T.c., Shin, K.G.: Large-scale Malware Indexing Using Function-
Call Graphs. In: ACM Conference on Computer and Communications Security
(CCS) (2009)

13. Junod, Pascal: Obfuscator-LLVM. https://github.com/obfuscator-llvm/

obfuscator/wiki

14. Kushner, David: Steamed: Valve Software Battles Video-game
Cheaters. http://spectrum.ieee.org/consumer-electronics/gaming/

steamed-valve-software-battles-videogame-cheaters

15. Lee, B., Kim, Y., Kim, J.: binOb+: A Framework for Potent and Stealthy Binary
Obfuscation. In: ACM Symposium on Information, Computer and Communica-
tions Security (ASIACCS) (2010)

16. Moser, A., Kruegel, C., Kirda, E.: Exploring Multiple Execution Paths for Malware
Analysis. In: IEEE Symposium on Security and Privacy (S&P) (2007)

17. Oreans Technologies: Code Virtualizer: Total Obfuscation against Reverse Engi-
neering. http://oreans.com/codevirtualizer.php

18. Pawlowski, A., Contag, M., Holz, T.: Probfuscation: An Obfuscation Approach
using Probabilistic Control Flows. In: Technical Report TR-HGI-2016-002, Ruhr
University Bochum (2016)

19. Popov, I.V., Debray, S.K., Andrews, G.R.: Binary Obfuscation Using Signals. In:
USENIX Security Symposium (2007)

20. Ramalingam, G.: The Undecidability of Aliasing. ACM Transactions on Program-
ming Languages and Systems (TOPLAS) (1994)

21. Sharif, M., Lanzi, A., Giffin, J., Lee, W.: Automatic Reverse Engineering of Mal-
ware Emulators. In: IEEE Symposium on Security and Privacy (S&P) (2009)

22. VMProtect Software: VMProtect: Software protection against reversing and crack-
ing. http://vmpsoft.com/

23. Wang, C., Davidson, J., Hill, J., Knight, J.: Protection of Software-Based Sur-
vivability Mechanisms. In: International Conference on Dependable Systems and
Networks, 2001. DSN 2001. (2001)

24. Wang, P., Wang, S., Ming, J., Jiang, Y., Wu, D.: Translingual Obfuscation. In:
IEEE European Symposium on Security and Privacy (Euro S&P) (2016)

25. Yadegari, B., Johannesmeyer, B., Whitely, B., Debray, S.: A Generic Approach to
Automatic Deobfuscation of Executable Code. In: IEEE Symposium on Security
and Privacy (S&P) (2015)

26. Zeng, Z., Tung, A.K., Wang, J., Feng, J., Zhou, L.: Comparing Stars: On Approx-
imating Graph Edit Distance. In: International Conference on Very Large Data
Bases (VLDB) (2009)

