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Abstract. Software complexity has increased over the years. One com-
mon way to tackle this complexity during development is to encapsulate
features into a shared library. This allows developers to reuse already im-
plemented features instead of reimplementing them over and over again.
However, not all features provided by a shared library are actually used
by an application. As a result, an application using shared libraries loads
unused code into memory, which an attacker can use to perform code-
reuse and similar types of attacks. The same holds for applications writ-
ten in a scripting language such as PHP or Ruby: The interpreter typ-
ically offers much more functionality than is actually required by the
application and hence provides a larger overall attack surface.
In this paper, we tackle this problem and propose a first step towards
automated application-specific software stacks. We present a compiler ex-
tension capable of removing unneeded code from shared libraries and—
with the help of domain knowledge—also capable of removing unused
functionalities from an interpreter’s code base during the compilation
process. Our evaluation against a diverse set of real-world applications,
among others Nginx, Lighttpd, and the PHP interpreter, removes on av-
erage 71.3% of the code in musl-libc, a popular libc implementation. The
evaluation on web applications show that a tailored PHP interpreter can
mitigate entire vulnerability classes, as is the case for OpenConf. We
demonstrate the applicability of our debloating approach by creating
an application-specific software stack for a Wordpress web application:
we tailor the libc library to the Nginx web server and PHP interpreter,
whereas the PHP interpreter is tailored to the Wordpress web applica-
tion. In this real-world scenario, the code of the libc is decreased by 65.1%
in total, thereby reducing the available code for code-reuse attacks.

1 Introduction

To reduce complexity of software and provide low-level features in a consis-
tent manner, the concept of shared libraries was developed. This gives devel-
opers the possibility to focus solely on the user-facing application rather than
re-implementing common functionality such as memory management or string
processing functions over and over again. However, since not all code of a given



2 Nicolai Davidsson, Andre Pawlowski, and Thorsten Holz

shared library is used in a given program, the downside of this concept is that
unnecessary code is loaded into memory: a recent study finds that only 5% of the
libc, the standard library for the C programming language, is used on average
across 2,016 applications of the Ubuntu Desktop environment [32].

From an attacker’s perspective, the typical way to exploit an existing vulner-
ability is to reuse existing code (e. g., ret2libc [39] or return-oriented program-
ming [35] (ROP)) to execute shellcode and bypass existing mitigation systems
such as W⊕R and address space layout randomization (ASLR). Since shared
libraries offer a plethora of (mostly) unused code, the attacker has a large va-
riety of existing functions or code parts to choose from. The same holds for
applications written in interpreted languages, such as PHP, Python, or Ruby:
the interpreter is a complex piece of software and offers more functionality than
the application actually requires [31]. Hence, an attacker that is able to inject
her own script code into the application can leverage these provided but unused
methods to execute her exploit.

One way to remove the unused code of a shared library is to statically link it
against the target application. This allows the linker to remove the unnecessary
code and thus reduce the availability of code snippets an attacker can choose
from for a code-reuse attack. However, this increases the complexity in managing
software updates: since each application has to be compiled statically linked with
all used libraries, each has to be updated when a vulnerability is found in the
code of any used library. To tackle this problem, Quach et al. [32] presented the
concept of piece-wise compilation and loading. It allows to compile an application
and shared libraries with additional metadata to have a customized loader only
load the needed code into memory. Unfortunately, the concept of this approach
only works with shared libraries and does not apply to applications written in
interpreted languages.

In this paper, we present a first step towards automatic application-specific
software stacks. Our goal is to customize the software stack for a given applica-
tion (e. g., a web application or server application) such that only the actually
required library code and underlying execution environment is contained within
the software stack, hence debloating the software stack. To achieve this goal, we
introduce a compiler extension capable of removing unused code from shared
libraries, written in C. With information about which exported functions the
target application uses, the compiler pass can omit functions at compile time
from the shared library that are not used by the application or library itself.
As a result, a shared library specifically tailored to the target application is cre-
ated. To enhance usability, our approach is able to create shared libraries that
are tailored to more than one application (e. g., a script interpreter and a web
server). In contrast to a statically linked library, tailoring to a group of appli-
cations provides the same flexibility as a dynamically shared library given that
only the shared library has to be re-compiled if a vulnerability in its code was
discovered. When deployed with other existing defenses, such as Control-Flow
Integrity (CFI) [11], an application-specific software stack further restricts the
wiggle room an attacker can exploit to perform a successful attack.
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Moreover, we show that—with the help of domain knowledge—this approach
is also capable of removing unused functionalities in script interpreters when tar-
geting an application written in an interpreted language (such as PHP or Ruby).
Consider for example a Wordpress installation. With our approach, a PHP in-
terpreter can be tailored to the concrete Wordpress web application. Since all
unused functionalities are removed from the interpreter, an attacker that is able
to inject script code (e. g., by uploading a script file) is no longer able to leverage
them for their attack. Moreover, instead of removing unused functionalities in
the interpreter, our approach allows to replace them with booby traps [16], i. e.,
dormant code that when executed triggers an alarm. This way, an ongoing attack
can be detected when a functionality that was removed is executed. Note that
the Wordpress-specific PHP interpreter and the web server can be compiled with
our debloating approach for libraries, leading to an application-specific software
stack. Regarding the recent trend to separate services into container (such as
Docker [1]) to provide a better security in case of a vulnerability, this makes
tailoring shared libraries to specific server applications real-world deployable.

An application-specific script interpreter also allows to reduce the attack
surface significantly in environments in which untrusted scripts are executed
(such as Google App Engine [4]). Normally, unwanted functionalities are disabled
in configuration files. However, since the code that provides these functionalities
is still available in the script interpreter, an attacker might be able to bypass the
restrictions and escape the interpreter’s internal sandbox [29]. When compiling
the script interpreter in an application-specific way, the code for the unneeded
functionalities are completely removed, which prevents an attacker from using
them entirely.

We evaluated our prototype compiler pass for LLVM by tailoring two libc
implementations (musl-libc and uClibc) to a diverse set of applications. The re-
sults show that on average the code for the musl-libc tailored to an application
is reduced by 71.3%. A previous study on libc utilization [32] concluded that
only 5% of code on average is used in the library. However, their evaluation
set consists of mostly small applications, which explains the significant differ-
ence in comparison to our results. Additionally, we show that by using domain
knowledge, our prototype is able to mitigate possible attacks on web applica-
tions: starting from seven security-critical PHP functions that might be used
for remote command execution (according to the RIPS code analyzer [7]) in the
interpreter, a PHP interpreter tailored to OpenConf or FluxBB only contains
one sensitive PHP function. This significantly raises the bar for an attacker able
to execute own PHP code since using a removed PHP functionality triggers a
booby trap and hence raises an alarm. In fact, in case of OpenConf, our ap-
proach removes the possibility to execute shell commands from the interpreter
in most system configurations due to the nature of the remaining sensitive PHP
function. Additionally, we show the real-world applicability of our approach by
creating a Docker container consisting of an application-specific software stack
for a Wordpress installation. Our evaluation shows that the code of the libc used
by the web server and PHP interpreter in this container is reduced by 65.1% in
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total, hence demonstrating that our debloating approach removes a signification
fraction of unused code.

Contributions. In summary, we provide the following contributions:

– We present the design and implementation of an LLVM compiler pass ca-
pable of removing unused code from shared libraries and script interpreters
written in C that effectively reduces the available code snippets for reuse
attacks by debloating the software stack used by a given application.

– Our evaluation shows that on average 71.3% of the code in the musl-libc is
removed when tailoring it to a target application. Moreover, when applying
our approach to the PHP interpreter by targeting specific web applications,
it is capable of eliminating entire vulnerability classes, such as command
execution.

To foster research on this topic, we release the code of our LLVM compiler
pass as open-source software under https://github.com/RUB-SysSec/ASSS.

2 Background

Shared libraries offer developers a way to reuse already implemented function-
alities in their program. These functionalities can either be code in the form
of functions or data (e. g., global variables). For example, libc provides the de-
veloper with a variety of low-level functionalities (e. g., memory allocation and
string processing). During compilation, there are two ways to couple the external
functionalities with the own application: static linking and dynamic linking. In
case of static linking, the external functionalities are resolved and plainly copied
into the application during compilation. This means that no shared library is
needed to execute the application since all library-provided functionalities are
part of the program itself and hence available in memory. In case of dynamic
linking, the external functionalities are replaced with a symbol which is resolved
during the execution of the program. Hence, the shared libraries that provide
the functionalities have to be present in memory to execute the application.

In practice, dynamic linking is used in most deployment scenarios. This allows
the system to use the same shared library for multiple applications. Furthermore,
having only one copy of the shared library improves usability during software
patching: if a vulnerability is found in a function offered by a shared library, the
user only needs to update the corresponding shared library. Since all dependent
applications use this shared library, the vulnerability is fixed for all of them. In
case of static linking, all applications using this functionality have to be updated
to fix the vulnerability. As explained earlier, the main downside of using dynamic
linking is the fact that this approach increases the amount of unused code that
is mapped into the memory of the application. Therefore, sensible operations in
functionalities not used by the application itself are also present in memory.
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3 High-Level Overview

The idea behind application-specific software stacks is based on the observation
that applications do not use every functionality provided by their underlying
software stack (e. g., interpreters or libraries). Therefore, it is safe to remove
code of these unused functionalities to debloat the application without affecting
it. Furthermore, by removing code snippets or whole functions that can poten-
tially be used by an attacker in code-reuse attacks narrows down the options
an attacker has. This also holds for scripting languages, for example, in a web
application context: the script interpreter offers more functionality than the web
application uses. Stripping the interpreter from these functionalities debloats the
interpreter, but does not interfere with the given web application. Moreover, in
cases an attacker is able to insert her own script code (e. g., by uploading a script
file to a web server), she is limited in the interpreter functionalities she can use.

We define two layers for a software stack: the application layer and the sup-
port layer. The application itself resides on the application layer. This can either
be a native code application or an application written in an interpreted language
(e. g., web application). In a web application context, the application layer also
includes the web framework the application uses. The libraries and script in-
terpreter are located on the support layer. This layer provides functionalities
that are used by the application. However, it also contains additional code and
functionalities that are not used by the application. Underneath the support
layer resides the operating system (OS). Functionalities provided by the OS are
usually accessed via the support layer through low-level libraries such as the libc.

Our goal is to debloat the software stack by removing unneeded code from the
support layer. This is done by analyzing the application and retrieving control
transfers from the application layer into the support layer. This information is
then used to recompile the support layer without the unused code. The result
is a software stack tailored to the application. However, this approach is not
limited to tailoring the support layer to only one application, thus increasing its
usability. Consider for example a Wordpress installation. The libraries used by
the web server and PHP interpreter can be specifically tailored to support both.
Moreover, the PHP interpreter can be customized to only contain functionalities
used by Wordpress. Hence, the debloating is achieved throughout the whole
software stack by preserving the usability of shared libraries.

In the case of native code applications, the same code reduction can be
achieved by using static linking during the compilation and linking process. As
a result, the functionalities provided by the libraries and used by the applica-
tion are directly inserted into the code of the program. This moves part of the
support layer directly into the application layer. However, this also means that
the advantages of sharing libraries between multiple applications are also lost.
As a result, as soon as a vulnerability is discovered in a library functionality,
all applications using this library have to be updated. Application-specific soft-
ware stacks, on the other hand, still provide the advantages of shared libraries.
It is possible to group different applications to use one shared library tailored
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to them (as in our example a web server and script interpreter). Hence, our
approach offers a middle ground between code reduction and usability.

4 Approach

In this section, we describe our approach for application-specific software stacks.
We start by describing the basic method of our LLVM pass and refining it step-
by-step throughout this section until each challenge encountered is tackled. The
final goal in this paper is to create a Wordpress installation with a tailored PHP
interpreter and a libc implementation application-specific to the interpreter and
web server. Hence, the described method focuses only on tailoring the libraries
to a target application first. Afterwards, domain knowledge is used to enhance
our approach to also support specific script interpreters. However, due to space
constraints we only describe the modifications to support the PHP interpreter
and refer to our Technical Report [19] for the modifications made to support the
Ruby interpreter and to see the full algorithm.

4.1 Libraries

The control-flow transfer from the application layer into the support layer can be
performed in multiple ways. In the easiest form, it is a direct call of a function.
However, more complicated constructs such as indirect calls via function point-
ers are also possible. An analysis tailoring libraries to a specific application at
compile time must not miss any of these, since one missing functionality leads to
an uncompilable library in the best case, and a broken application in the worst.
Next, we describe a method for LLVM capable of handling all these cases.

libarea.so

area_ellipsearea_circle

area_square area_rectangle

... 

call area_rectangle 

... 

... 

call area_ellipse 

... 

... 

 

... 

Whitelist

area_square

Fig. 1: Example of the basic idea of the analysis. A target application uses the function
area square. Hence, the function area rectangle is also added to the whitelist.
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Base Method We start with a whitelist of functions, which initially contains all
exported functions of the library used by the target application. The exported
functions can be obtained by reading the metadata of the target application
(e. g., with the help of the binutils tool readelf). Consider the example shown
in Figure 1. The target application uses the function area square of the library.
During compilation, each currently processed function is checked if it resides in
the whitelist. If the function area square is processed, all direct control-flow
transfers are also explored. Each new function that is reachable by the direct
control-flow transfer is added to the whitelist and further explored. In this ex-
ample, the function area rectangle is added to the whitelist. This phase of
searching for new reachable functions is called function exploration. Since this
phase uses a depth-first search (DFS) approach, it is guaranteed to visit all func-
tions that are reachable by an initial given function. Hence, all functions in the
whitelist after the analysis is finished are necessary for the application to work.
All other functions can be safely removed. In the given example, area circle

and area ellipse are dismissed.

Indirect Control-Flow Transfers Unfortunately, the compiler cannot always de-
termine the target of a control-flow transfer. Often control-flow transfers are
handled with the help of function pointers, i. e., through indirect call instruc-
tions. Therefore, we have to consider them during our analysis. Hence, we have
to extend our approach to work with instructions handling function pointers. We
found that the following LLVM intermediate representation (IR) instructions are
capable of handling function pointers:

– store: storing data in a variable.

– return: returning data at the end of a function.

– select: chooses between two distinct values depending on a boolean condi-
tion.

– phi: merging multiple variables into a single variable for Single Static As-
signment (SSA) form [17].

Since all these instructions can work with a function pointer, our analysis has
to be able to process them. Therefore, we extend the function exploration phase
to extract the data handled by these instructions to find all indirect control-flow
transfers. If the extracted data is a function pointer, we continue the exploration
at the pointer target.

This refined method handles all possible function pointers that are set inside
the used code. However, since the semantics of the code are not considered,
this analysis can overestimate the actually used functions. Consider for example
a select instruction that chooses between two function pointers. When the
boolean condition evaluates always to true, then only one function is ever reached
by this code construct. Yet, our analysis considers both functions as reachable
and thus overestimates the actually used functions. Note that this conservative
overestimation guarantees us to not break the application.
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Global Variables Although function pointers set directly in the code are already
handled by our analysis, function pointers can also reside in global variables.
Since the current form of our analysis is not able to find these function pointers in
global variables, a valid call using a function pointer from a global variable would
break the application. To handle global variables, we add a global exploration
phase to our analysis. In this phase, all global variables are processed and checked
for function pointers. If they contain a function pointer, the target is added to the
whitelist as well. The global exploration phase is executed before the function
exploration phase to guarantee that the newly whitelisted functions are also
explored.

A discussion about limitations of our function pointer analysis is given in
Section 7.

4.2 Script Interpreters

Often applications written in scripting languages like PHP, Ruby, or Python
are not translated into native code, but interpreted by the corresponding script
interpreter. As a result, the interpreter itself is a part of the support layer for
these applications. However, in contrast to the method described in Section 4.1
for native code libraries, the analysis cannot just remove code from the inter-
preter since it cannot distinguish which code belongs to a certain interpreter
functionality. Hence, to build an application-specific interpreter, our analysis
has to leverage domain knowledge about the internals of the target interpreter.
More specifically, the analysis has to know the mapping of script functions to
native code functions. To achieve our goal of running a Wordpress installation
with an application-specific interpreter, we modify our analysis to work with
the PHP interpreter in the following. We refer to our Technical Report [19] for
modifications on our analysis to work with the Ruby interpreter.

PHP stores information for each registered PHP function in global function
entries, which are basically a map of structs [8]. The structs contain, among oth-
ers, the pointer to the native code function and the name of the PHP function.
During execution, they are used to handle the transition from PHP to native
code. The interpreter uses these function entries to look up the native code
function that is eventually executed to perform the application’s desired func-
tionality. Hence, modifying these function entries during the compilation of the
PHP interpreter to remove the code from it is the best way to keep our approach
as generic as possible. Since the function entries are part of the architecture of
PHP, they are less likely to change between different PHP versions and hence
our approach should be compatible with upcoming PHP releases.

To enable our analysis to remove PHP functionalities from the interpreter at
compile time, we introduce a whitelist of PHP functions and modify the global
exploration phase. The modification extracts the PHP function names from the
PHP global function entries and checks if they are on the PHP whitelist. If
they are, the corresponding native function is stored for processing during the
function exploration phase. As a result, the native code corresponding to the
functionality only remains in the interpreter when it is on the PHP whitelist.
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PHP supports the paradigm of object-oriented programming, i. e., functions
can be associated to classes. An example of a class and its member function
directly provided by the PHP interpreter is the Directory class and its function
read [3]. However, the PHP function name does not contain any information
about the associated class. Hence, if multiple classes register a PHP function with
the same name, our analysis is not able to distinguish between them. Consider
an example where classes A and B both register a function with the name read.
If the application only uses A::read, our analysis will still whitelist the read

function of both classes. This loss in precision results in the PHP interpreter still
containing functionality that is not needed, however, it guarantees to not break
the application.

5 Implementation

Our prototype implementation resides inside the compiler itself since it has to
be able to modify the code and data structures directly (e. g., for the PHP
interpreter). Hence, to build a tailored software stack for a given software, the
whole support layer has to be re-compiled using our compiler pass. The support
layer consists of the libraries (and script interpreter) of the target application,
and all libraries used by the libraries. Eventually, an application-specific software
stack is created for the given software. For native code applications, the used
exported functions have to be extracted as initial information for the compiler
pass (e. g., with the help of the binutils tool readelf). For applications using
script languages, the analysis to get all used interpreter functionalities has to be
done by external tools like Parse [6] for PHP.

We built the prototype of our approach as compiler pass for LLVM 5.0.1. In
total, our implementation consists of around 1,000 lines of C++ and 100 lines
of Python code. To prevent possible dependency issues, each created module
by LLVM is merged into one. This gives our compiler pass a global view of
all existing code and data. Since our pass works on the LLVM IR, it is com-
pletely architecture and platform independent. Hence, each architecture that is
supported by LLVM is also supported by our approach (e. g., ARM or MIPS).

To integrate it into the build process of an application as seamlessly as pos-
sible, we created a compiler wrapper script. This script is used as compiler for
the application and handles all steps needed to perform our analysis.

A detailed discussion on limitations of our approach is given in Section 7.

5.1 Manual Configuration

Although our approach aims to automate the process in creating an application-
specific software stack, a user might want to preserve certain functionality in
the libraries. This can have various reasons, e. g., using the same library by
multiple applications. Hence, the user is able to modify the configuration file
for the library and add additional function names to the whitelist. Furthermore,
a library could need an additional whitelisted function which is not referenced



10 Nicolai Davidsson, Andre Pawlowski, and Thorsten Holz

directly from the application. This is the case for C entry functions (e. g., start)
which are directly called by the loader during load time.

Since LLVM does not lift assembly instructions into its IR, control-flow trans-
fers to functions done in assembly are not detected by our analysis. We encoun-
tered five such cases in which assembly instructions in the code call a function
not referenced in the rest of the code base (three in musl-libc and two in uClibc).
Since we did not encounter any cases outside of the libc, we believe such cases
more common in libraries providing low-level functionalities such as memory
management and hence an exception.

Another case for manual configuration are functions that are resolved dy-
namically via loader functionalities such as dlsym. Since these functions do not
have a reference in the code (either a direct reference or an indirect via a function
pointer), our current prototype is not able to detect them. However, since we
only encountered one case of dynamically resolved functions during our evalua-
tion ( dls3 in musl-libc), we believe this feature to be rarely used in practice.
Furthermore, this function was not resolved by loader functionalities, but by a
self-implemented version of dlsym inside the musl-libc. This shows further how
difficult it is to fully automate the process of creating an application-specific
software stack and the reason for allowing manual configuration. A detailed dis-
cussion on how to address these cases in an automated way is given in Section 7.

5.2 Booby Trapping Script Interpreters

Most scripting languages offer ways to list all registered functions. An attacker
able to execute script commands is therefore able to use this functionality as in-
formation leak to circumvent removed functionality. For example, the PHP func-
tion get defined functions returns all functions registered to the interpreter.
To thwart these attempts, our approach is not only able to remove functionality
from the script interpreter, but to replace its native code implementation with
a booby trap [16]. A booby trap contains code that when executed warns from
an attack. Since this code lies dormant in memory and is never executed by the
benign application, an execution of this code detects an altered control flow and
hence an ongoing attack. When the native code implementation of a script func-
tion is replaced by this code, an attacker executing interpreter functionality that
is not used by the application otherwise is detected. Furthermore, this removes
any leak regarding the information about functions registered to the interpreter.
If the attacker does not have access to the source code of the application (e. g., a
proprietary application), this removes the possibility to circumvent booby traps.

6 Evaluation

As a target for our applications, we use Linux on the Intel x86-64 architecture
because of its popularity as a server system. In this section, we first evaluate
the effect of an application-specific software stack on the used shared libraries,
afterwards a PHP interpreter tailored to specific web applications is measured.
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Subsequently, we study the code reduction of our approach on our running exam-
ple: an application-specific software stack for a Wordpress installation. Finally,
we perform a security evaluation of our approach on the basis of several CVEs
and discuss the performance overhead.

6.1 Libraries

To evaluate the effect of our approach on native code applications, we compile
different libc versions as an application-specific software stack. Unfortunately,
the most common implementation glibc is written in GNU C, an extension of
the C programming language which is not supported by LLVM [28]. There-
fore, we resort to two other popular libc implementations: musl-libc (1.1.18) and
uClibc (0.9.34). The musl-libc focuses on speed, feature-completeness, and sim-
plicity [5]. It is used, for instance, by the Alpine Linux distribution, which is
the distribution used for official Docker containers [15]. The uClibc implemen-
tation targets microcontrollers and therefore focuses mainly on size [10] (e. g.,
it is used by the buildroot project [2]). We compile both libc implementations
without any changes by our transformation to have a complete shared library to
compare against as an upper boundary. As a lower boundary, we compile both
implementations using our approach with a minimal configuration which con-
tains the least amount of functions necessary in the initial whitelist to compile
the library (5 functions for musl-libc and 12 functions for uClibc).

To show the effect of an application-specific shared library, we compile the
libc implementation for different applications: Micro-Lisp, Nginx (1.13.8), Lighttpd
(1.4.48), Busybox (1.28), PHP (7.3.0-dev) for different web applications, and
Miniruby (2.6.0-dev). To have a small basic PHP interpreter that supports all
base features of our used web applications, we enabled support for Mysqli and
zlib and disabled support for XML, iconv, PEAR, and DOM. Additionally, the
PHP interpreter is also compiled in a minimal configuration (the least amount
of functions necessary to run it) and in a complete configuration to better show
the impact of an application-specific library. The Ruby interpreter has the op-
tion to build a smaller version of itself called Miniruby. This interpreter only
contains the core functionalities (YARV instruction set [34]) of the Ruby in-
terpreter. Since the difference between a complete Miniruby interpreter and a
minimal Miniruby are smaller, it is more suited to show the impact of our ap-
proach than the full-fledged Ruby interpreter. For Busybox, we had to disable
the coreutil functionalities: date, echo, ls, mknod, mktemp, nl, stat, sync, test
and usleep. We were not able to compile uClibc with LLVM when these features
were activated because of the dependency on buildroot. Hence, we had to modify
the toolchain for uClibc to work without buildroot.

Code Reduction Table 1 depicts the results of our measurements. As evident
from the table, the complete musl-libc has 2,603 functions, whereas a minimal
configuration only needs 358 functions (13.8%) to be compilable. These con-
figurations provide an upper and lower boundary of the code reduction that
is possible for a target application. When tailoring the musl-libc to a specific
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Table 1: Results of the remaining code for musl-libc and uClibc. On top for each li-
brary, the table shows the number of functions and code size for the complete and
minimal library. The minimal library shows the remaining code for a configuration
which contains the minimal number of functions to compile the library. Following the
same metrics for the library tailored to a specific application.

Application #Funcs % Code Size % Application #Funcs % Code Size %

musl-libc (complete) 2,603 1,007 kB uClibc (complete) 891 450 kB
musl-libc (minimal) 358 13.8 116 kB 11.5 uClibc (minimal) 164 18.4 108 kB 23.9

Micro-lisp 366 14.1 118 kB 11.7 Micro-lisp 168 18.9 115 kB 25.5
Busybox 893 34.3 345 kB 34.2 Busybox 388 43.6 329 kB 73.2
Nginx 762 29.3 276 kB 27.4
Lighttpd 745 28.6 260 kB 25.9
PHP (Complete) 1,014 39.0 390 kB 38.8
PHP (FluxBB) 817 31.4 296 kB 29.4
PHP (OpenConf) 839 32.2 326 kB 32.3
PHP (Wordpress) 874 33.6 336 kB 33.4
PHP (Minimal) 768 29.5 280 kB 27.8
Miniruby (Complete) 907 34.8 325 kB 32.3
Miniruby (Minimal) 684 26.3 221 kB 21.9

application, Micro-lisp needs the fewest functions from the library with 14.1%
remaining. In fact, this configuration needs only eight functions more than the
minimal configuration which is necessary to compile the library. A complete
PHP interpreter needs the most with 39.0%. On average, 30.3% of the functions
remain in the musl-libc when tailored to an application. Since uClibc focuses
on being as small as possible to work on microcontrollers, it does not have all
features that the libc provides. Therefore, only Busybox and Micro-Lisp of our
evaluation set work with this library. The complete library has 891 functions,
whereas the minimal configuration only has 164 (18.4%). A uClibc tailored to
Micro-lisp has 168, which are 18.9% of all functions and only four functions
more than the minimal configuration possible. The Busybox configuration has
43.6% functions remaining after its compilation. This shows that even a library
focusing on being as small as possible can be further reduced by our approach.
The code size confirms that the libraries did not only lose small wrapper-like
functions, but that the code is reduced in a proportional way to the number of
functions present.

Removing PHP functionalities from the interpreter also influences the code
required in the underlying libc. A complete PHP interpreter has 39.0% of the
functions available in the musl-libc remaining, whereas a minimal PHP inter-
preter only needs 29.5% of the functions in the library. A PHP interpreter
tailored to the Wordpress web application, the largest web application of our
evaluation set, needs only 33.6% of the functions of the musl-libc. On average, a
PHP interpreter tailored to a web application needs only 32.4% of the functions.
This shows that for software debloating it is imperative to not only focus on the
shared libraries itself, but to take into account the actual application running
when an interpreted language is used.
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Table 2: Results of our gadget evaluation for musl-libc and uClibc. On top for each
library, the table shows the number of unique ROP gadgets, jump-oriented program-
ming (JOP) gadgets, call-oriented programming (COP) gadgets, call-preceding (CP)
gadgets, and syscall gadgets for the complete and minimal library. The minimal library
shows the remaining gadgets for a configuration which contains the minimal number
of functions to compile the library. Following the same metrics for the library tailored
to a specific application.

Application #unique % #JOP % #COP % #CP % syscall %

musl-libc (complete) 9,692 332 324 581 157
musl-libc (minimal) 1,578 16.3 40 12.1 106 32.7 108 18.6 81 51.6

Micro-lisp 1,581 16.3 36 10.8 113 34.9 110 18.9 81 51.6
Busybox 3,203 33.1 152 45.8 204 62.7 252 43.4 103 65.6
Nginx 3,196 33.0 105 31.6 166 51.2 209 36.0 106 67.5
Lighttpd 2,694 27.8 97 29.2 163 50.3 224 38.6 101 64.3
PHP (Complete) 4,012 41.4 130 39.2 235 72.5 281 48.4 106 67.5
PHP (FluxBB) 2,950 30.4 99 29.8 210 64.8 222 38.2 100 63.7
PHP (OpenConf) 3,387 35.0 101 30.4 201 62.0 226 38.9 97 61.8
PHP (Wordpress) 3,518 36.3 133 40.1 184 56.8 223 38.4 97 61.8
PHP (Minimal) 2,794 28.8 85 25.6 187 57.7 195 33.6 96 61.2
Miniruby (Complete) 3,533 36.5 97 29.2 181 55.9 237 40.8 112 71.3
Miniruby (Minimal) 2,578 26.6 59 17.8 176 54.3 181 31.2 104 66.2

uClibc (complete) 6,101 663 285 546 733
uClibc (minimal) 1,736 28.5 87 13.1 75 26.3 142 26.0 150 20.5

Micro-lisp 1,724 28.3 82 12.4 77 27.0 146 26.7 150 20.5
Busybox 3,896 63.9 315 47.5 129 45.3 312 57.1 325 44.3

Code-Reuse Attacks A modern way for an attacker to exploit a vulnerability in
an application is to reuse existing code. One way for an attacker is to transfer
the control flow to an existing function in a library with crafted arguments and
therefore execute the behavior the attacker desires (e. g., ret2libc attack [39]).
However, since the number of existing functions in the library is significantly
reduced, an attacker may not be able to find a function that executes the behavior
she needs. For example, in all configurations listed in Table 1, except for Busybox
for uClibc, the function system which is usually used to execute shell commands
in an exploit is removed from the code.

Another way to reuse existing code for an attack is called return-oriented pro-
gramming (ROP) [35]. For this exploiting technique, small code snippets called
gadgets are combined by the attacker to build the shellcode. Since an attacker
needs a variety of different ROP gadgets to obtain the shellcode she needs, we
measured the reduction of gadgets in the library with the tool ROPgadget [33]
in version 5.6. While a tailored software stack alone does not prevent code-reuse
attacks, this metric gives an estimate on the limitation an application-specific
software stack imposes on ROP attacks. Besides measuring the number of unique
ROP gadgets remaining, we also measured security-sensitive gadgets such as
jump-oriented programming (JOP) [12], call-oriented programming (COP) [13],
call-preceding gadgets (CP) [13], and syscall gadgets [35].

A minimal configuration of musl-libc and uClibc has only 16.3% and 28.5%
of the unique ROP gadgets the complete library has. A tailored musl-libc has in
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Table 3: Results for PHP. The categories show the number of sensitive functions remain-
ing in the PHP interpreter for each configuration. The special configurations complete
and minimal give the numbers of sensitive functions for an unmodified PHP interpreter
and a PHP interpreter containing the least number of functions to be executable.

Base Interpreter Application-Specific Interpreter

Complete Minimal FluxBB OpenConf Wordpress

Code Execution 5 0 3 2 3
Command Execution 7 0 1 1 4

the worst case 41.4% of unique ROP gadgets remaining for the complete PHP
interpreter and in the best case 16.3% for Micro-lisp. For a tailored uClibc, 28.3%
of the unique ROP gadgets remain for Micro-lisp and 63.9% for Busybox. Since
uClibc is already optimized in regard to code size, the gadget reduction was to be
expected less than the one for musl-libc. A full overview of all remaining gadgets
is given in Table 2.

Overall, our evaluation shows that an application-specific library loses most
of its code. The code size reduces proportionally to the number of functions re-
moved. Furthermore, the number of unique ROP gadgets is reduced significantly,
which narrows down the choices an attacker has when exploiting a vulnerability.
While an application-specific software stack alone does not prevent code-reuse
attacks, the combination of a tailored software stack with other defenses (e. g.,
CFI) might restrict an attacker sufficiently to prevent exploitation.

6.2 Web Applications

To show the applicability of an application-specific software stack for applica-
tions using a script interpreter, we measure the impact of our approach on web
applications, namely FluxBB (version 1.5.10, 21,295 LOC), OpenConf (version
6.80, 21,232 LOC), and Wordpress (version 4.9.1, 183,820 LOC). We focus on
web applications for PHP and use the same interpreter as compiled for the
evaluation in Section 6.1. To give a realistic overview, we have chosen web appli-
cations of different categories and sizes. To generate the initial whitelist of PHP
functions as described in Section 4.2, we use the static analysis tool Parse [6].
Unfortunately, Parse does not support the paradigm of object-oriented program-
ming, which leads to the necessity to add two additional functions to the initial
whitelist for FluxBB (dir and read) and one for Wordpress (mysqli connect).

Although modern web applications often provide a way to install additional
plugins, we only evaluate our approach on the basic web applications to give a
base line of removable functionalities. If someone wants to use specific plugins,
these plugins only have to be included into the extraction of PHP functions for
the initial whitelist to work with the resulting customized interpreter.

To evaluate the quality of the removed code, we measure the number of
remaining sensitive functions in the script interpreter. We use the categories
provided by the open source version of RIPS, a static PHP security scanner [9].
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Since the goal of an application-specific script interpreter is to reduce the im-
pact of an attacker executing arbitrary PHP code (e. g., by uploading an attacker
controlled script file), we focus on the categories Code Execution and Command
Execution. Code Execution contains all functions that allow an attacker to exe-
cute arbitrary PHP functionality and Command Execution contains all functions
that allow an attacker to execute shell commands on the host. Table 3 shows
the full results, in the following we provide a high-level overview.

The base interpreter without any functions removed has five PHP func-
tions in the Code Execution category (assert, create function, preg filter,
preg replace, and preg replace callback). In contrast, a minimal configu-
ration of the interpreter (least amount of PHP functions necessary to run the
interpreter itself) does not have any such function. This shows that it is possible
to remove this functionality completely from the interpreter as long as the target
web application does not use one of the sensitive functions. Unfortunately, all
projects use some Code Execution functionality and hence our approach is not
able to remove it completely from the script interpreter with FluxBB using three
different PHP functions, OpenConf two, and Wordpress three.

PHP functions that provide the ability to execute arbitrary shell commands
on the host system are in the category Command Execution. A complete PHP
interpreter provides seven such functions (exec, passthru, popen, proc open,
shell exec, system, and mail) and a minimal configuration none. Unfortu-
nately, each of the web applications of our evaluation set again uses at least
one sensitive function from the category. For a FluxBB installation, the only
PHP function allowing arbitrary shell command execution remaining is exec.
However, since exec is only used to display the system’s uptime in the ad-
ministration control panel, removing it from the code would allow to remove
the ability to execute shell commands completely from the script interpreter.
Hence, an attacker that is able to upload her own script file to a web server is no
longer able to execute shell commands. An OpenConf configuration has also only
one PHP function remaining in the Command Execution category, the function
mail. However, there are multiple limiting factors to consider before an attacker
is able to execute shell commands with the help of mail which we discuss in
Section 6.4 in detail. Hence, a tailored script interpreter for OpenConf removes
the attack vector of Command Execution in most cases completely. A config-
uration for Wordpress has still four PHP functions that allow shell command
execution. Here, the functionality still remains in the script interpreter and a
malicious usage is only mitigated by the insertion of booby traps as explained in
Section 5.2. An attacker not knowing about the tailored PHP interpreter that
gains arbitrary PHP function execution could trigger a booby trap by executing
a removed functionality.

In summary, an application-specific script interpreter reduces the available
options for executing code or shell commands. Furthermore, it is also able to re-
move certain functionalities altogether and leave the attacker with no possibility
to perform such an attack. In cases where the functionality still remains in the
interpreter, it mitigates its malicious effects by inserting booby traps (which are
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especially effective in case of proprietary web applications) that can be triggered
by an attacker using a removed functionality.

6.3 Use Case: Wordpress Container

To evaluate the debloating effect for a real-world scenario, we created a Docker
container for our running example, an application-specific Wordpress installa-
tion. This container comprises of a PHP interpreter tailored to Wordpress, as
well as a musl-libc tailored to the Nginx web server and PHP interpreter. Since
the web server has to interact with the interpreter directly, PHP is additionally
compiled with the FastCGI Process Manager (FPM). This scenario comprises
a setting for which our approach was designed. One shared library tailored to
multiple applications to keep the usability benefits of dynamic linking and a
script interpreter customized for a web application.

The code reduction for the script interpreter is as discussed in Section 6.2.
However, the reduction in the library is different since it is now tailored to two
applications. The code of the musl-libc is reduced to 351 kB (34.9% of its original
size). To put things in perspective, the musl-libc tailored solely to a Wordpress
customized PHP interpreter has only 33.4% of its code remaining and a Nginx -
specific library 27.4%. This suggests that most of the library functions are shared
by PHP and Nginx. Only 2.958 unique ROP gadgets were found (41.2% of the
original amount). Even when comparing to a library specific to a complete PHP
interpreter, this shared musl-libc setup results in a smaller library with less code.

In summary, this real-world setting shows a significant code reduction even
with a library tailored to multiple applications. Since this code reduction restricts
the options for an attacker performing an attack (e. g., whole function reuse,
ROP, or PHP code execution), it is an important additional piece for a security-
in-depth environment already providing other forms of defenses (e. g., CFI).

6.4 Security Evaluation

OpenConf 5.30 had multiple vulnerabilities that could be chained together to
gain remote code execution [18]. This was achieved by injecting PHP code into
an uploaded file and executing it. In an application-specific script interpreter
for OpenConf, the attacker’s possibilities are limited after gaining PHP code
execution. The only remaining way to execute shell commands is by using the
mail function which allows control over the arguments passed to the underlying
sendmail command. However, before the arguments are passed to sendmail by
the PHP interpreter, they are escaped internally. As a result, it is exploited
by creating a file that can be abused as PHP shell and thus gain PHP code
execution [21]. However, again the only remaining way for the attacker to execute
shell commands with her created PHP shell is with the mail function. Hence, it
is not possible for the attacker to execute any shell commands with the tailored
PHP interpreter. The only exception is a system that uses the Exim mail server
which allows a direct shell command execution with the mail function. Therefore,
depending on the system configuration, an application-specific script interpreter
would mitigate such an attack.
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CVE-2016-5771 and CVE-2016-5773 in the PHP interpreter were found for
Pornhub’s bug bounty program in 2016 [22]. The penetration testers used it to
exploit the unserialize function and gain remote code execution on the server.
In their ROP shellcode, they used the function zend eval string to interpret
a given string as PHP code. Although an application-specific PHP interpreter
would not have eliminated this vulnerability (since the code was used by the web
application), the exploiting could be made more difficult with it. For example,
the native code function zend eval string is not present in any of our tailored
interpreter instances (except the complete PHP interpreter). Additionally, when
interpreting a string as PHP code, it might use a removed functionality and thus
trigger a booby trap. Hence, depending on the used web application, the range
of suitable candidates to use for an exploit can be limited.

6.5 Performance

Since our approach only removes unnecessary code from the support layer of the
target application, it does not induce a performance penalty. However, it does not
have a performance gain either, because only code is removed that is not executed
by the application anyways. The memory consumption of an application-specific
library is smaller than the consumption of the complete library, since code is re-
moved from the binary and therefore not loaded into memory. Nonetheless, since
each group of applications need their own tailored library, the overall memory
consumption of the system is increased. However, since using containers for each
service (which also increase the memory consumption for each used library) gains
more popularity, we deem it acceptable for practical deployments.

7 Discussion

Scripting languages often offer the possibility to dynamically evaluate code (such
as eval in PHP). When used by the application, it makes the initial analysis to
gather all necessary interpreter functionalities much harder. Our approach relies
on the accuracy of specialized analysis tools for this. However, if the analysis
tool is not able to provide accurate data, the tailored interpreter could break
the application. Furthermore, if a user-provided input is directly passed to an
evaluation function, stripping down the interpreter becomes impossible since
the user can provide any programming construct she likes. However, such flawed
code constructs allow direct access to the system anyway and trying to prevent
it can be regarded as a losing battle.

As evident from our evaluation, an application-specific interpreter reduces
the options an attacker has if she is able to execute own code in a targeted
web application. Furthermore, it is able to remove certain vulnerability classes
completely. However, if a web application uses a certain interpreter functionality
that can also be used for an attack, our approach is not able to thwart this. To
be more precise, if a web application relies on the PHP function exec to execute
commands directly on the system (like in the case of FluxBB), our approach
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cannot remove it. To mitigate attacks using this functionality, approaches to
monitor such remaining functions can be deployed additionally [37].

We showed that the concept of our approach is capable of working with
script interpreters such as PHP and Ruby. However, as script interpreters have
different internal structures, our approach cannot be used directly with another
interpreter such as Python. To support it, domain knowledge of the interpreter’s
internal workings has to be integrated (i. e., the mapping of script functions to
native code functions). As this merely means that additional engineering effort
is needed to support other interpreters, it does not constitute a limitation of the
general concept of our approach.

Another limitation is that each application needs its own customized libraries.
As a result, when running multiple services like a web application in combination
with a database server, both need their own tailored libc (or combine their anal-
ysis results to create one libc for both applications). On first glance, this seems
infeasible for a real-world scenario. However, the recent trend to separate each
part of a service into a container, such as Docker [1] (which uses Alpine Linux
with musl-libc for official containers), makes our approach applicable for real-
world scenarios. When running a web application, one container can contain the
web server as well as a script interpreter (e. g., PHP) with a shared application-
specific software stack and another container the database server with its own
tailored software stack. Thus, enhancing the security mechanism of separating
services with reduced options for an attacker to reuse existing code.

As the evaluation in Section 6 has shown, minor manual configuration is still
necessary in some cases. For web applications these were cases where the used
static analysis tool Parse was not able to process object-oriented programming
constructs. However, this is not a shortcoming of our approach, but just a lim-
itation of the used analysis tool. Using a different analysis tool that is capable
of handling object-oriented programming like RIPS [7] solves this problem. Mi-
nor manual configuration was also necessary for both tested libc versions. These
were either cases that LLVM could not handle due to assembly, functions that
are called by the loader, or functions that were resolved dynamically during
runtime by the loader as explained in Section 5.1. These cases require more en-
gineering work and do not constitute conceptual limitations of our approach.
Assembly directly used in the source code can either be lifted to LLVM IR with
tools such as McSema [38] or processed separately. Entry point functions called
directly by the loader can be whitelisted initially by just adding the names of
the C specific starting functions (e. g., start). We did not do this to have a
complete evaluation. Dynamically resolved functions can be addressed by inte-
grating a data-flow analysis which ends in the corresponding library functions
(e. g., dlsym). However, solving this in general is hard since the only case we
encountered used a self-implemented function of the dlsym functionality to re-
solve the function pointer. Hence, our approach can be seen as a first step to an
automated way to create application-specific software stacks.

Our current prototype focuses on removing unused code from shared libraries
and script interpreters written in C, however, support for C++ is subject of fu-
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ture work. To work with C++, our approach has to be able to handle virtual
function tables (vtables) which are used on a low-level to implement polymor-
phism. A naive approach would be to whitelist all functions that are part of a
vtable. However, this would decrease the precision of the code debloating and
heavily overestimates the used functions. A better way would be to improve the
static analysis to only keep functions in the vtable that are actually used. For
this to work correctly, our approach has to track the data flow of vtables pre-
cisely to identify all used functions and must be able to modify entries in the
vtables to remove unused ones [30].

Our approach uses a flow-insensitive analysis to find function pointer targets
with which we did not encounter any misses during our evaluation. However,
the C programming language allows constructs that do not provide sufficient
meaningful information in LLVM to determine the possible targets. In these
edge cases, a more sophisticated points-to analysis has to be implemented like
the one developed by Emami et al. [20].

8 Related Work

Debloating software is an appealing approach to thwart attacks and we now dis-
cuss works closely related to ours. Based on the observation that an application
only uses a small part of the code provided by a shared library, Quach et al. [32]
presented a debloating approach. They developed a compiler extension that adds
metadata to an ELF binary (application and shared libraries) about the location
of functions and their dependencies. On execution of an application, the loader
writes the shared library into memory and then removes all functions that are
not used by the application by overwriting them. However, though the analysis
is similar to the presented one, their approach is only applicable to native code
applications and does not work with applications written for a script interpreter.

JRed [24] is an automated approach to remove unused code from Java appli-
cations. It analyzes the bytecode of an application and removes unused code in
the application itself and core libraries of the JRE. However, it is only capable
of handling Java bytecode and ignores native code libraries during its analysis.
Since JRed only targets Java bytecode, it does not tackle challenges like indi-
rect control-flow transfers through function pointers as done by our approach.
Landsborough et al. [27] presented an approach to remove unwanted function-
alities from binary code by using a genetic algorithm. Since it works on traces
obtained via dynamic analysis, it needs test cases that execute every functional-
ity the target application should keep. If the set of test cases is not complete, the
code corresponding to a needed but not tested functionality is removed and thus
breaks the application. Additionally, it does not scale and did not even termi-
nate when removing a feature from the echo application of coreutils. Chisel [23]
aims to support programmers to debloat programs. It needs the source code
and a high-level specification of its functionalities to remove unwanted features
with the help of delta debugging. A similar goal is pursued by Sharif et al. [36]
and their prototype implementation TRIMMER, a LLVM compiler extension.
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With the help of a user-provided manifest about the desired features, it tries
to remove unwanted functionalities to debloat the application. A binary-only
approach targeting specifically applications using a client-server architecture is
presented by Chen et al. [14]. Their approach uses binary-rewriting techniques
and a user-provided list of features with corresponding test cases to execute
those to customize the target application. BinRec [25] also aims at debloating
already compiled applications. It is based on LLVM and needs to lift the target
binary into the LLVM IR before it can perform its transformations. Since au-
tomatically removing features from an application on the binary level is prone
to errors, BinRec also provides a fallback mechanism to use removed code from
the original binary. In contrast to our approach, these approaches focus on re-
moving features from a target application itself, while we aim to remove unused
functionalities from libraries and script interpreters.

An approach to debloat the Linux kernel was presented by Kurmus et al. [26].
Their approach focuses on optimizing the configuration for the Linux kernel to
remove unnecessary features at compile time. This work is orthogonal to ours
and can further improve the security of the system by not only tailoring the
userspace software stack in an application-specific way, but also optimizing the
Linux kernel to target a specific application.

9 Conclusion

In this paper, we presented an approach to compile shared libraries tailored
to a specific application by removing unused code from them. Since complex
applications, such as the PHP interpreter, do not even use half of the provided
functions in a shared library, we showed that this debloating significantly reduces
the choices an attacker has for code-reuse attacks. Furthermore, we demonstrated
that with the help of domain knowledge, our approach is also capable of tailoring
a script interpreter to a script application (e. g., a web application).

We demonstrated an application-specific software stack tailored to a Word-
press installation (customized PHP interpreter, libc tailored to web server and
interpreter), and showed a significant code reduction.
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