
A Tough call: Mitigating Advanced Code-Reuse Attacks At The Binary Level

Victor van der Veen∗†, Enes Göktaş∗†, Moritz Contag‡, Andre Pawlowski‡, Xi Chen†,
Sanjay Rawat†, Herbert Bos†, Thorsten Holz‡, Elias Athanasopoulos†, and Cristiano Giuffrida†

∗Equal contribution joint first authors

†Computer Science Institute
Vrije Universiteit Amsterdam, The Netherlands
{vvdveen, herbertb, giuffrida}@cs.vu.nl,

{e.goktas, x.chen, s.rawat, i.a.athanasopoulos}@vu.nl

‡Horst Görtz Institut for IT-Security (HGI)
Ruhr-Universität Bochum, Germany

{moritz.contag, andre.pawlowski, thorsten.holz}@rub.de

Abstract—Current binary-level Control-Flow Integrity (CFI)
techniques are weak in determining the set of valid targets
for indirect control flow transfers on the forward edge. In
particular, the lack of source code forces existing techniques
to resort to a conservative address-taken policy that over-
approximates this set. In contrast, source-level solutions can
accurately infer the targets of indirect callsites and thus
detect malicious control-flow transfers more precisely. Given
that source code is not always available, however, offering
similar quality of protection at the binary level is important,
but, unquestionably, more challenging than ever: recent work
demonstrates powerful attacks, such as Counterfeit Object-
oriented Programming (COOP), which made the community
believe that protecting software against control-flow diversion
attacks at the binary level is impossible.

In this paper, we propose binary-level analysis techniques to
significantly reduce the number of possible targets for indirect
callsites. More specifically, we reconstruct a conservative ap-
proximation of target function prototypes by means of use-def
analysis at possible callees. We then couple this with liveness
analysis at each indirect callsite to derive a many-to-many
relationship between callsites and target callees with a much
higher precision compared to prior binary-level solutions.

Experimental results on popular server programs and on
SPEC CPU2006 show that TypeArmor, a prototype implemen-
tation of our approach, is efficient—with a runtime overhead
of less than 3%. Furthermore, we evaluate to what extent
TypeArmor can mitigate COOP and other advanced attacks
and show that our approach can significantly reduce the
number of targets on the forward edge. Moreover, we show
that TypeArmor breaks published COOP exploits, providing
concrete evidence that strict binary-level CFI can still mitigate
advanced attacks, despite the absence of source information or
C++ semantics.

I. INTRODUCTION

Control-Flow Integrity (CFI) [7] is one of the most
promising ways to stop advanced code-reuse attacks. Unfor-
tunately, enforcing it without access to source code is hard in
practice. The reason is that it requires an accurate Control-
Flow Graph (CFG) and extracting such CFG from binary
code is an undecidable problem. As a result, most existing
binary-level CFI implementations base their invariants on
an approximation of the CFG which leaves enough wiggle

room for an attacker to launch successful exploits [10], [11],
[15], [18], [19], [27].

While it may be possible to stop some advanced attacks
using a perfect shadow stack implementation [9], there is
one class of attacks for which there is no existing defense
at the binary level whatsoever. This class of function-
reuse attacks, exemplified by Counterfeit Object-Oriented
Programming (COOP) [26], chains together calls to existing
functions through legitimate callsites. This strategy preserves
the integrity of the shadow stack, while abusing the overap-
proximation of the extracted CFG to call the wrong functions
from these callsites. This attack is powerful since it allows
for exploits that integrate smoothly with legitimate code
execution. Unless there is deep knowledge of the C++ class
hierarchy semantics, which we can only extract if we have
the source code [13], it is hard to tell a COOP exploit apart
from a legitimate code sequence [26]. Lacking a handle on
the functions that a callsite may target leaves all the existing
binary-level CFI solutions unable to stop COOP attacks.

In this paper, we revisit binary-level protection in the
face of COOP attacks and follow-up improvements [13]. We
explore to what extent we can narrow down the set of pos-
sible targets for indirect callsites and stop exploitation at the
binary level. Our conclusion is not that all possible attacks
can be stopped: even the tightest CFI solutions with access
to source code are unable to guarantee perfect protection
against all possible attacks [9]. Nevertheless, we demonstrate
that TypeArmor, our binary-level protection prototype, can
stop all COOP attacks published to date and significantly
raise the bar for an adversary. Moreover, TypeArmor pro-
vides strong mitigation for many types of code-reuse attacks
(CRAs) for programs binaries, without requiring access to
source code. As researchers have shown that it is easy to
bypass existing binary-level CFI defenses [10], [11], [15],
[18], [19], [27], this is a significant improvement.

TypeArmor incorporates a forward-edge CFI strategy that
relies on conservatively reconstructing both callee prototypes
and callsite signatures and then uses this information to
enforce that each callsite strictly targets matching functions

only. For example, TypeArmor disallows an indirect call that
prepares fewer arguments than the target callee consumes.
Additionally, TypeArmor incorporates a novel protection
policy, namely CFC (Control-Flow Containment), which
further reduces the possible target set of callees for each
callsite. CFC is based on the observation that, if binary
programs adhere to standard calling conventions for indirect
calls, undefined arguments at the callsite are not used by
any callee by design. TypeArmor trashes these so-called
spurious arguments and thus breaks all published COOP
and improved COOP-like exploits. These exploits all chain
virtual method calls that disrespect calling conventions to
achieve convenient data flows between gadgets [13]. CFC
eliminates these data flows via unused argument registers
and thus stops such exploitation attempts.

Current binary-level solutions enforce “loose” forward-
edge CFI policies, often allowing control transfers from any
valid callsite to any valid referenced entry point [33], [34]. In
the best case, existing policies only reduce the target set by
removing all entry points of other modules unless they were
explicitly exported or observed at runtime [24]. In contrast,
TypeArmor matches up indirect callsites with a more precise
target set in a many-to-many relationship. It relies on use-def
analysis at all possible callees to approximate the function
prototypes, and liveness analysis at indirect callsites to
approximate callsite signatures. This effectively leads to a
more precise CFG of the binary program in question, which
could also be used by existing mitigation systems to amplify
their (context-insensitive) invariants (e.g., PathArmor [30]).

Can TypeArmor defend against any exploit? No. Ty-
peArmor protects only forward edges at the binary level.
As shown by previous work, a backward-edge protection
mechanism (e.g., a shadow stack [14] or context-sensitive
CFI [30]) is still essential to ensure the integrity of return ad-
dresses at runtime [9], [18]. In this paper, we assume an ideal
backward-edge protection mechanism such as a shadow
stack with no design faults [12]. TypeArmor complements
such backward-edge protection by countering attacks that
take place without violating the integrity of the return path.
Specifically, TypeArmor provides strong (but not infallible—
given also the fundamental CFI limitations [9]) protection
against COOP exploits as well as improved COOP-like
exploits [13] and similar advanced attacks such as Control
Jujutsu [16].

Is TypeArmor superior to approaches like IFCC/VTV and
CPI? No. IFCC/VTV [29] and CPI [23] are strong source-
level defenses which produce binaries that can resist control-
flow hijacking attacks. Source-based techniques are more
precise in using fine-grained program constructs (such as
the C++ class hierarchy or generic data types) for mitigation
purposes. However, there are still important reasons to study
and improve binary-level defenses. First, the source code
for many off-the-shelf programs is not always available.

Second, real-world programs rely on a plethora of shared
libraries and recompiling all shared libraries is not always
possible. This is true even for purely open-source projects.
For example, in VTV [29], the authors evaluate their system
on ChromeOS, which includes legacy libraries. The authors
had to manually whitelist these libraries, a task which is
not trivial (certain code has to be annotated) and does not
scale. Third, even if the source code of the libraries is
available, recompiling big projects with dynamic depen-
dencies is, again, a demanding task. Even state-of-the art
defenses that enforce CFI policies at the source level such
as SAFEDISPATCH [21] do not support dynamic libraries.
Note that this is not a minor issue: mixing CFI-protected
with non-protected code is impossible. If CFI is applied in
just a portion of the CFG, crashes due to legitimate execution
are possible. In contrast, with a binary-level solution, we
can offer strong protection even if the source code is not
available or when recompilation is not feasible (or desirable).

In summary, we make the following contributions in this
paper:

• We introduce techniques to recover callsite signatures
and callee prototypes for security enforcement pur-
poses. Our techniques yield binary-level control-flow
invariants which approximate the type-based invariants
used in source-level solutions [29] and are thus much
more precise than those used in prior binary-level CFI
solutions [24], [33], [34].

• We demonstrate that fully-precise, static forward-edge
CFI is inherently hard to achieve in a conservative
fashion, due to the unavoidable precision loss when
deriving traditional CFI-style target-oriented invariants
at the binary level. To compensate for the precision
loss, we complement our CFI strategy with a new
technique termed Control-Flow Containment (CFC).
CFC relies only on our callsite analysis to effectively
contain code-reuse attacks. This approach improves the
quality of control-flow invariants of traditional target-
based approaches, overall resulting in a strict binary-
level CFI strategy.

• We implement and evaluate TypeArmor, a new strict
CFI solution for x86 64 binaries. Our experimental
results demonstrate that TypeArmor can enforce much
stronger forward-edge invariants than all the existing
binary-level CFI solutions, while, at the same time,
introducing realistic runtime performance overhead (<
3% on SPEC).

• We show that our strict binary-level CFI strategy
can mitigate advanced attacks in complete absence of
source information or C++ semantics. For example,
TypeArmor can stop all published COOP [26] exploits
and their improvements [13].

The remainder of this paper is organized as follows. We
start with a more detailed discussion of our main goal:

mitigating COOP-like attacks at the binary level. Section II
provides a short introduction of how COOP works and
Section III presents an overview of how TypeArmor is
designed to mitigate COOP attacks. Section IV and V
present TypeArmor internals. Section VI, Section VII, and
Section VIII evaluate TypeArmor’s performance and secu-
rity. Finally, Section IX surveys related work and Section X
concludes the paper.

II. MOTIVATION: KEY REQUIREMENTS FOR COOP

Counterfeit Object-Oriented Programming (COOP), pro-
posed by Schuster et al. [26], is a novel attack technique that
belongs to the class of code-reuse attacks (CRAs). While
the core ideas have general applicability, the attack strategy
described in [26] relies on Object Oriented Programming
(OOP) principles and mainly targets C++ applications. In
contrast to many proposed CRAs, COOP makes the exploit’s
control flow more akin to a benign execution flow. In this
section, we summarize the technique with a focus on its key
requirements: the ability to target unrelated virtual functions
from an indirect callsite, and especially to pass data from
one COOP gadget to another. In the next section, we show
how TypeArmor impacts the attacker’s possibilities to satisfy
these requirements.

By exploiting a memory corruption bug, COOP diverts
execution flow to a chain of existing virtual function calls
(so called vfgadgets) via an initial vfgadget. In practice, an
attacker can control said virtual function calls by injecting
multiple, attacker-controlled counterfeit objects that reuse
existing vtables in the binary. By choosing the correct object
layout and overlapping multiple objects, an attacker can
ensure intended data flows between different gadgets.

The original COOP paper [26], along with its improve-
ment [13], proposes two main types of initial vfgadgets: (i)
the main-loop gadget (ML-G) and (ii) the recursive gadget
(REC-G). Such gadgets are responsible for dispatching the
vfgadget chain using virtual function calls. The former
depicts “[a] virtual function that iterates over a container [...]
of pointers to C++ objects and invokes a virtual function of
these objects” [26]. The latter, in turn, requires at least two
consecutive virtual function calls on distinct (counterfeit)
objects. The first call dispatches a vfgadget, whereas the
last recurses into (any) REC-G.

Proper use of object overlapping may enable an attacker to
pass data through object fields, if applicable. For example,
one vfgadget may write to and another gadget then reads
from, the same object field. In this paper, we refer to this
strategy to pass data between vfgadgets as an explicit data
flow. Schuster et al. found that cases that allow for explicit
data flows are “rare in practice.” [26]. Other approaches
focus on the calling convention assumed by the indirect call
that dispatches the vfgadgets. The ability to pass data to a vf-
gadget then depends on the choice of the ML-G, or REC-G,
respectively. In the case of x86 64 calling conventions, the

first six arguments are passed through registers (assuming
System V ABI). These registers are scratch registers that
are not preserved by a function. Consequently, if the ML-
G or REC-G does not destructively update one of these
registers in between virtual function calls, changes made to
such a register by a vfgadget are implicitly passed to the
next gadget. In other words, they represent an implicit data
flow. Similar approaches for other platforms exist as well,
for which we refer the reader to the original paper [26].

III. OVERVIEW

In this section, we first outline the threat model and
assumptions under which TypeArmor operates. We then give
a high-level overview of TypeArmor and discuss the impact
of TypeArmor’s measures on COOP exploits.

A. Threat model and assumptions

We assume a common threat model where an attacker can
read/write the data section and read/execute the code section
of a vulnerable program. The program does not contain self-
modifying code, W ⊗X is in place, and the attacker is able
to hijack the program’s control flow by means of a memory-
corruption vulnerability. We seek to defend against attacks
with a binary-level version of (forward-edge) Control-Flow
Integrity (CFI) [7]. In other words, our solution should
support legacy binaries without access to source or debug
symbols. In doing so, we focus on 64-bit binaries and
analyze only function parameters that are passed via registers
(those passed on the stack are conservatively handled).
Depending on the ABI, this gives TypeArmor the capability
to track at most 4 (in the case of Microsoft’s x64 calling
convention) or 6 (System V ABI) arguments. For simplicity,
our implementation currently does not take floating-point
arguments passed via xmm registers into consideration; future
work may improve TypeArmor by extending static analysis
to also include these registers. Nevertheless, as we show in
Section VI, this still gives us enough information to stop
even state-of-the art code-reuse attacks.

Obfuscated or hand-crafted binaries are out of scope and
we assume an originating compiler that generally adheres
to one of the standard calling conventions (to allow our
static analysis to derive meaningful invariants), but can
also occasionally resort to custom calling conventions for
functions which are not externally visible due to standard
compiler optimizations (which our analysis can conserva-
tively handle). We discuss compiler optimizations in more
detail in Section IV-B3, illustrating how TypeArmor can
support optimizations from standard compilers and how it
can be also extended to support optimizations from non-
standard (or future) compilers. We stress that the current
TypeArmor prototype works on stripped binaries that have
been compiled using different optimization levels (namely
-O0, -O1, -O2, and -O3).

B. TypeArmor: Invariants for Targets and Callsites

TypeArmor deploys a combination of two type-based
control-flow invariants, resulting in a strict forward-edge
protection strategy: target-oriented invariants and callsite-
oriented invariants. Target-oriented invariants are based on
traditional CFI policies [7], but callsite-oriented invariants
have not been explored for binaries before. Specifically,
TypeArmor enforces callsite-oriented invariants through a
novel containment technique which we term Control-Flow
Containment (CFC). As noted above, extracting complete
function and callsite type information at the binary level is
hard in practice, and impossible in the general case. There-
fore, TypeArmor relies on a relaxed form of type information
(argument count and return value use), and enforces a many-
to-many type-based matching strategy between callsites and
targets. TypeArmor applies such type-based invariants, in-
spired by source-level CFI techniques [29], at the binary
level for the first time.

In particular, TypeArmor ensures that indirect callsites that
set at most max arguments cannot target functions that use
more than max arguments. For instance, if TypeArmor finds
a callsite that prepares at most 2 arguments, it ensures that
the callsite can never jump to a function that consumes 3 tar-
gets or more. Additionally, TypeArmor ensures that indirect
callsites that expect a return value (non-void callsites) can
never jump to a callee that does not prepare such value (void
functions). Enforcing such invariants at the binary level is
challenging and subject to the precision of argument count
and return use information derived by static analysis at both
the callsite and at the target function.

While CFI’s target-oriented invariants seek to identify the
target set for each callsite, CFC follows a completely target-
agnostic approach and thus is subject to the precision of ar-
gument count information only at the callsite. CFC relies on
callsite-oriented invariants to scramble all the unused func-
tion arguments at every callsite, so that illegal (type-unsafe)
function targets are not inadvertently exposed to stale (and
potentially attacker-controlled) arguments. Similarly, at the
callee, CFC is caller-agnostic and relies on liveness analysis
to detect void functions. For these, TypeArmor scrambles
unused return registers before the function returns. This
strategy disrupts many type-unsafe function argument reuse
attempts, which are required by existing COOP exploits.
We include a formal definition of the invariants used by
TypeArmor’s CFI and CFC in Appendix A.

Note that, in order to be conservative and support existing
program functionality, TypeArmor’s callsite analysis is may
only report an overestimation of the number of prepared
arguments, while the callee analysis should report only
underestimation. As an example, consider a callsite cs that
prepares 3 arguments and a callee f that consumes 3 argu-
ments. TypeArmor may detect that cs prepares 4 arguments
and f only uses 2 arguments. TypeArmor’s invariants dictate

T0

T1

T2

T3
T4

movl %rax,%rdi
movl %rbx,%rsi
mov 0x123,%rdx
call *0x8(%rax)
... ...
... ...
movl 0x44,%rdi
call * %rax

call with 3
arguments

call with 1
argument

Figure 1. Hierarchical structure of binary-level function types. Ti is
a set of functions that take i or less arguments. The first indirect call
instruction (with 3 prepared arguments) may call functions in T3 (which
also include functions that are in T2, T1, and T0), while the second indirect
call instruction (preparing only 1 argument) may only target functions that
are in T1 (which includes those that are in T0).

that, in this scenario, cs is still allowed to call f . Examples
of how callsite overestimation and callee underestimation
occur are further discussed in Section IV.

TypeArmor uses static analysis results to enforce control-
flow invariants at runtime. The enforcement component
relies on binary rewriting supported by the Dyninst binary
analysis framework [8] to enforce CFI, CFC, or both (default
configuration).

1) CFI: TypeArmor relies on the caller-to-callee mapping
derived by our target-oriented invariants analysis. For this
purpose, TypeArmor instruments each function according
to its type and each indirect callsite to check if it calls
the appropriately typed function. In contrast to source-level
type-based CFI solutions [29], which benefit from one-to-
one (i.e., precise function signature) mappings to detect type-
incompatible targets, TypeArmor relies on a many-to-many
mapping to sidestep the problem of identifying precise func-
tion signatures at the binary level—infeasible in general [25].
This strategy effectively results in a hierarchical function
type structure when checking target-oriented invariants, as
exemplified in Figure 1. As shown in the figure, the first
callsite (at the top) passes 3 arguments to the callee, which
thus belongs to set T3 (also including sets T0, T1 and T2).
The second callsite (at the bottom), in contrast, passes only
1 argument to the callee and thus requires that the callee
belongs to the set T1 (also including T0).

Note that the invariant that a non-void callsite cannot call a
void function (omitted from Figure 1 for simplicity) doubles
the number of function types: the set of functions that a
particular non-void callsite may target is a subset of the
possible targets for void callsites. This is because, at the
binary level, it is only possible to determine potential non-
void callsites. If our analysis finds that a callsite is not non-
void, it cannot guarantee that this is a void callsite (the caller
may call a non-void function, but never use its return value).

2) CFC: TypeArmor relies on the caller-to-type mapping
derived by the callsite-oriented invariants analysis. For this
purpose, it instruments each indirect callsite to scramble
unused arguments before transferring control to the callee
and instruments each void function to scramble unused

return arguments before transferring control back to the
caller.

A thorough analysis of TypeArmor’s static analysis is
presented in Section IV, while we discuss the runtime
component in Section V.

C. TypeArmor’s Impact on COOP

TypeArmor’s CFC enforces a maximum number of ar-
guments prepared at a callsite and scrambles the unused
registers. This severely impacts the ability of an attacker
to enable data flow between gadgets.

As discussed in the original COOP paper [26], data flow
via object fields is hard to achieve in practice due to a lack of
useful gadgets. Instead, in the case of the x86 64 System V
ABI, Schuster et al. suggest using unused argument registers
to achieve data flow between indirect calls in the ML-G or
REC-G, respectively. This only works if the invoking gadget
does not update the register destructively. However, CFC is
explicitly designed to introduce destructive updates of un-
used argument registers before an indirect call and mitigates
this data-passing strategy. Furthermore, TypeArmor’s CFI
implementation reduces the target set of the virtual function
calls by the main-loop and recursive gadgets considerably.
It prohibits any forward edges to functions that expect more
arguments than the callsite prepares.

Needless to say, both aspects rely on the accuracy of
TypeArmor in terms of callsite coverage in general and
argument count identification for both callsites and target
functions. Hence, implementing TypeArmor at the binary
level is challenging from a research point of view and never
as accurate as source-level solutions. However, we will show
that it is effective in practice. In the next two sections,
we look at the static analysis and dynamic enforcement of
TypeArmor’s invariants.

IV. STATIC ANALYSIS

Static analysis in TypeArmor seeks to detect (i) the max-
imum number of prepared arguments at indirect callsites,
(ii) the minimum number of consumed arguments at possible
callees, and (iii) the preparation (callees) and expectation
(callsites) of return values. Since TypeArmor targets binaries,
the analysis works on disassembled code. For this purpose,
we leverage the Dyninst binary analysis framework which
is capable of constructing Control-Flow Graphs (CFGs) for
both program binaries and libraries [8].

A. Callee Analysis

We use static analysis to determine the argument count
at the callee side. Given a set of address-taken (AT) func-
tions1, TypeArmor iterates over each function and performs

1A function f is defined to have its address taken if there are one
or multiple instructions in the binary that load the entry point of f into
memory. By definition, indirect calls can only target AT functions.

a custom inter-procedural liveness analysis [22]. The anal-
ysis focuses on collecting state information on registers to
determine if they are used for passing arguments or not.
For a given path of instructions or basic blocks according
the CFG, a register can be in one of the following states:
read-before-write (R) (data are always read from this register
before new data are written to it), write-before-read (W)
(this register is always written to before it is read), or
clear/untouched (C) (this register is never read or written to).
The state of a particular basic block contains the combined
register state for all argument registers. The analysis starts
at the entry basic block of an AT function and iterates
over the instructions to determine the usage of registers.
If all argument registers are either R or W, the analysis
terminates. However, if at least one register is in a C state,
a recursive forward analysis starts until the block has no
outgoing edges. Note that the analysis takes special care
about variadic functions, which we discuss in Section IV-A4.

1) Forward Analysis: A recursive analysis loops over all
outgoing edges of the basic block to get a pointer to the
next basic block to analyze. We distinguish between direct
calls, indirect calls, return instructions, and regular outgoing
edges (e.g., jump instructions). Depending on the edge type,
different operations are performed.

Direct calls: For direct calls, the next basic block to
analyze is the entry block of the target function. We also
retrieve the fall-through basic block for this instruction,
which is the block to be executed after the direct call returns.
For each direct call, we push the fall-through block on
a stack that TypeArmor maintains, which we later use to
analyze return instructions (see below). In the case of direct
calls that never return (e.g., calls to functions that exit), we
do not retrieve a fall-through block. We detect such calls
by checking whether they target a known function that exits
(e.g., exit@plt). This analysis is again recursive so that
we can correctly wrappers around exit as non-returning
functions.

Indirect calls: The analysis cannot statically infer the
target of the indirect calls and we thus have to be conserva-
tive. We assume that the target writes all arguments and stop
the recursion, transforming all remaining clear registers into
a write-before-read state.

Returns: For return instructions, we pop a fall-through
basic block from the stack and use it as the next basic block
in the analysis. An empty stack indicates the end of the
analyzed function and terminates the recursive analysis.

Other: We handle other edge types (including indirect
jumps, for which we rely on Dyninst to resolve its targets)
in the same way: the targets of the edge are set as the next
basic blocks in the analysis.

Finally, to avoid loops during the analysis, we keep track
of all blocks analyzed so far. When the analysis is about to
recurse, we check whether we already analyzed the next
basic block, and if so, continue with the next edge. In

addition, we use a cache to avoid multiple analysis passes
on the same basic block. Notice that the latter is just an
optimization for speeding up the analysis (which is offline),
and it does not affect the accuracy of the results.

2) Merging Paths: The value returned by TypeArmor’s
recursive forward static analysis for a basic block B, which
has n outgoing edges, provides us with a set of states
Si (i = 1, 2, . . . n). These states represent argument usage
information for each path following edge i. Each state is
represented by a vector composed by the state of each one of
the six argument registers. TypeArmor combines these states
into a superstate S that denotes the argument liveness for any
path following B. For this purpose, we use a conservative
policy that mandates that the state for argument register c
in S can only be R if the state for c is R for all states
Si (i = 1, 2, . . . n) following B. In other words, states W and
C always supersede R, but both (W and C) are neutral with
each other. After computing S, TypeArmor combines it with
SB , the state information for B. The merging policy here
is slightly different in that states other than C in SB always
supersede states in S. This is because B is executed before
any of its following basic blocks. For an actual example of
how path merging works, please refer to Figure 3 on page 7
and the explanation in Section IV-A6.

3) Argument Count: Once the recursive analysis con-
verges to a definite state for the entry basic block of
a function, the argument count is set using the highest
argument register that is marked as R. For instance, the
System V ABI uses rdi, rsi, rdx, rcx, r8, and r9, as
arguments registers. Therefore, if r9 has a read-before-write
state, we conclude that this particular function expects at
least 6 arguments. If r9 is W or C, then r8 is examined,
and so on.

4) Variadic Functions: Since variadic functions can take
any number of arguments and thus may use all argument
registers, variadic arguments may end up being passed in
both CPU registers and memory (via the stack). To support
easy manipulation of variadic arguments, modern compilers
tend to move all the variadic arguments onto the stack in
successive order upon entry of a variadic function. To make
sure that the forward static analysis does not erroneously
interpret the moving of argument registers to the stack as
read-before-write operations (and conclude that this func-
tion expects more arguments than are defined), TypeArmor
identifies variadic functions by means of pattern matching.

A function is labeled to contain n possible variadic
arguments iff (i) a series of n argument registers, starting
from the last argument register (r9 for the System V ABI),
are marked R, (ii) these reads occur in the same basic block
(and in the appropriate order), and (iii) the arguments are
written on the stack. If TypeArmor finds that a function
contains n argument registers, it limits the maximum number
of arguments for this function as computed by our forward
analysis to max−n, where max is defined to be the maxi-

ngx_snprintf

u_char * ngx_cdecl
ngx_snprintf(u_char *buf, size_t max, const char *fmt, ...)
{
 u_char *p;
 va_list args;

 va_start(args, fmt);
 p = ngx_vslprintf(buf, buf + max, fmt, args);
 va_end(args);
 return p;
}

ngx_snprintf

40f34c: mov %r8,-0xb0(%rbp)
40f353: mov %rcx,-0xb8(%rbp)
40f35a: lea -0xd0(%rbp),%rax
40f361: mov %rax,-0x10(%rbp)
40f365: lea 0x10(%rbp),%rax
40f369: mov %rax,-0x18(%rbp)
40f36d: movl $0x30,-0x1c(%rbp)
40f374: movl $0x18,-0x20(%rbp)
40f37b: add %rdi,%rsi
40f37e: lea -0x20(%rbp),%rcx
40f382: callq 40eb90
40f387: add $0xd0,%rsp
40f38e: pop %rbp
40f38f: retq

40f310: push %rbp
40f311: mov %rsp,%rbp
40f314: sub $0xd0,%rsp
40f31b: test %al,%al
40f31d: je 40f345
40f31f: movaps %xmm0,-0xa0(%rbp)
40f326: movaps %xmm1,-0x90(%rbp)
40f32d: movaps %xmm2,-0x80(%rbp)
40f331: movaps %xmm3,-0x70(%rbp)
40f335: movaps %xmm4,-0x60(%rbp)
40f339: movaps %xmm5,-0x50(%rbp)
40f33d: movaps %xmm6,-0x40(%rbp)
40f341: movaps %xmm7,-0x30(%rbp)
40f345: mov %r9,-0xa8(%rbp)

Figure 2. Variadic function detection searches for a basic block that
performs read-before-write operations on a series of argument registers in
consecutive order (either from lowest to highest in the case of gcc, or vice
versa for clang) without other instructions in between. Observe in this
particular example a group of instructions near the address 0x40f345. The
last three argument registers, namely r9, r8, and rcx, are moved (read-
before-write) to the stack through instructions contained in a single basic
block and in a specific order. Thus, this is a variadic function that uses its
last three argument registers to hold variadic arguments.

mum numbers of arguments that can be passed via registers
(6 for the System V ABI). Figure 2 illustrates the operation
of TypeArmor’s variadic function detection mechanism using
as an example the ngx snprintf function.

We tested our variadic function detection mechanism
against binaries compiled with both clang and gcc and found
zero cases where a variadic function was mistakenly detected
as a regular one. We did, however, observe a handful of
cases where a function was wrongly detected as accepting a
variadic number of arguments, leading to an underestimation
of the number of arguments used (see also Section VIII).

5) Conservativeness: A key property of the analysis
performed by TypeArmor at the callee is that it is con-
servative and therefore underestimation of the argument
count is possible. Some interesting cases are: (i) instructions
that perform a read and write on the same register (e.g.,
xor %rdi,%rdi or neg %r9), (ii) underestimated callees
deriving from functions mistakenly detected as variadic,
(iii) functions with many arguments (some of them passed
through the stack), (iv) analyzed paths that contain further
indirect calls, and (v) callbacks that do not actually use all
arguments. We stress that TypeArmor correctly handles case
(i) and assigns the register either the state R or W depending
on the used instruction (e.g., xor %rdi,%rdi is W and neg
%r9 is R). For (v), TypeArmor yields better results than
a source-level analysis. As an example, consider a generic
signal handler implementation, where the signal number is

(b) Register merging

Loop Edge

47ee30
C C C C C C

47ee28
R C C C C C

C C C C C C

47edf0
R C C C C C

R C C C C C R C R C C R&

47ee21
R C C R C C

R C C C C C

47ee1a
R C C C C C

R C C R C C

47ee0e
R C R C R C

R C C C C C R C C R C C&

47edc0
R R C C C *

R R C C C *

R R C C C W C C C C C C&

R C C C C C

47edcf
C R C C C W

R C R C R C R C C R C C&

47edfb
R C R C C R

(a) CFG

set_errno

False True

TrueFalse

True

True

True

False

False

Fall through

Fall through

47edc0: push %rbp
47edc1: mov %rsp,%rbp
47edc4: cmp $0xffffffd5,%esi
47edc7: sete %al
47edca: test %rdi,%rdi
47edcd: je 47ee30

R R C C C C

47edcf: movzbl %al,%r9d
47edd3: shl $0x8,%r9d
47edd7: cmp $0xffffffd5,%esi
47edda: mov $0x6e,%ax
47edde: cmovne %si,%ax

C R C C C W

47edfb: mov %ax,0x114(%rdi)
47ee02: or %r9d,0x110(%rdi)
47ee09: test %rdx,%rdx
47ee0c: je 47ee21

R C R C C R

47ee0e: test %r8d,%r8d
47ee11: mov %rdx,0xc0(%rdi)
47ee18: je 47ee21

R C R C R C

47ee28: mov (%rdi),%rdi
47ee2b: test %rdi,%rdi
47ee2e: jne 47edf0

R C C C C C

47edf0: cmpw $0x100,0x11c(%rdi)
47edf9: jl 47ee28

R C C C C C

47ee30: pop %rbp
47ee31: retq

C C C C C C

47ee1a: orb $0x2,0x103(%rdi)
R C C C C C

47ee21: mov %cx,0x11c(%rdi)
R C C R C C

Fall through

False

Figure 3. Callee analysis for void set errno(address item *addrlist, int errno value, uschar *msg, int rc, BOOL pass message)
(of Exim). Observe how merging paths works. The basic block starting at 0x47edfb (emphasized in bold) has state SB = (R,C,R,C,C,R), since rdi,
rdx, and r9 are read. There are two incoming states to this block, namely S1 = (R,C,R,C,R,C) and S2 = (R,C,C,R,C,C), which are combined to
a superstate S = (R,C,C,C,C,C) (note that C always supersedes). Finally, the superstate is combined with the block state, but this time R supersedes
and hence the output state is (R,C,C,C,C,C)∧ (R,C,R,C,C,R) = (R,C,R,C,C,R). The final state of all analyzed blocks is (R,R,C,C,C, ∗),
where the ∗ denotes that C does not supersedes W or vice versa.

always passed—and, thus, at least one argument is expected
to be passed to the callee—but not necessarily used by the
handler, something TypeArmor can accurately infer.

6) Example of Operation: To illustrate how the analysis
at the callee works, consider the set errno function (taken
from Exim) in Figure 3. The entry basic block contains
read operations on the first two argument registers (rdi and
esi). At this point, the analysis cannot infer other possible
arguments, but it can certainly proceed further. Based on the
outcome of the conditional operation at address 0x47edcd
there are two available paths. In case the conditional check
is False, the fall-through basic block at offset 0x47edcf
should be followed, otherwise, control should be transferred
to address 0x47ee30. The latter path simply returns and thus
ends the function without any additional read-before-write
operations. Since the analysis is conservative, this short path
is sufficient to conclude that a minimum of two arguments
are used by this function.

To illustrate TypeArmor’s forward merging process, we

include a complete merge graph for the set errno func-
tion in Figure 3(b). Since merging is a backward process,
the figure shows the CFG “up-side-down”. As an example
merging step, consider the basic block starting at 0x47edfb
which has SB = (R,C,R,C,C,R) (rdi, rdx, and r9 are
read). There are two incoming states to this block, namely
S1 = (R,C,R,C,R,C) and S2 = (R,C,C,R,C,C),
which are combined to a superstate S = (R,C,C,C,C,C)
(notice that C always supersedes). Finally, the superstate
is combined with the block state, but this time R super-
sedes, and hence the output state is (R,C,C,C,C,C) ∧
(R,C,R,C,C,R) = (R,C,R,C,C,R).

B. Callsite Analysis

TypeArmor iterates over each indirect callsite and per-
forms a backward static analysis—a variant of classical
reaching definition analysis [22]—to detect the prepared
argument count at a particular callsite. The backward static
analysis collects state information on all possible argu-

ment registers, but unlike our forward static analysis (Sec-
tion IV-A), it only accounts for registers that are either
set (S) or not (T, trashed). In particular, TypeArmor starts the
analysis at the basic block that contains the indirect call, and
iterates over preceding instructions for determining whether
argument registers are S or T. If all argument registers are S,
TypeArmor stops the analysis and assumes that the callsite
uses the maximum number of arguments. If some arguments
cannot be considered either S or T and the basic block
has incoming edges, TypeArmor starts a recursive backward
analysis.

1) Backward Analysis: Direct calls, returns, and other
incoming edges are distinguished in the same fashion as
in the callee analysis (see Section IV-A). For direct calls,
the preceding basic block to analyze next is the basic
block where the direct call originated. This means that
if the backward analysis reached the entry block of the
function containing the inspected callsite, an inter-procedural
backward analysis at all the callers of this function is
initiated. Return edges during backward analysis indicate
that the currently analyzed basic block has a predecessor
that performs a function call. Thus, at this point, traversing
further in this path is stopped and all remaining argument
registers are marked as T: we assume that argument registers
are always reset between two calls. This means that analysis
is terminated and the state of this basic block is returned.
Note that since indirect call targets cannot be resolved
statically, there are no indirect call edges.

2) Merging Paths: Path merging for the backward static
analysis is relatively straightforward: for all collected states
of the incoming basic blocks, T always supersedes S (ar-
guments must be set on all paths). Similar to the forward
analysis, once the recursive analysis is finished, the number
of prepared arguments is set based on the states of the last
write operations.

As an example, consider an indirect callsite cs that is
reachable by two basic blocks b1 and b2, both of which are
preceded by another indirect call instruction. If the backward
analysis finds that b1 writes to (sets) arguments register rdi,
rsi, and rdx (the first three argument registers), while b2
only sets rdi, TypeArmor concludes that cs prepares at most
one argument.

3) Compiler Optimizations: TypeArmor’s current imple-
mentation of backward static analysis may yield false con-
clusions (underestimation of number of prepared arguments)
if the compiler deploys (inter-procedural) redundant ar-
gument register write elimination. Two examples of such
optimization, which the compiler may perform at code
generation time, are shown in Figure 4. Figure 4(a) shows
how an inter-procedural write elimination pass may omit the
second mov $0x1,%rdi instruction (depicted in red), since
rdi has already been set to the same constant value in foo.
Figure 4(b) shows a similar optimization instance, however
eliminating writes across functions.

foo(void)
 mov $0x1, %rdi

bar(int arg1)
 ...

main(void)
 foo()
 mov $0x1,%rdi
 call bar

 (a)

bar(int arg1)
 ...

foo(int arg1)
 ...

main(void)
 mov $0x1,%rdi
 call foo
 mov $0x1,%rdi
 call bar

 (b)

Figure 4. Two variants of (inter-procedural) redundant argument register
write elimination. In both code snippets, a compiler optimization pass may
omit the second mov $0x1,%rdi instruction (depicted in red). In (a), %rdi
has been set to 1 in foo already and is never modified before the call to
bar, making the second mov operation redundant. A similar scenario occurs
in (b): the compiler may conclude that rdi has been set before the call to
foo, and was never modified before the second mov instruction.

After analyzing the source code of two popular compilers
(clang and gcc), we found no evidence of the presence of
above optimization. Moreover, as we show in Section VIII,
a thorough comparison of clang-generated binaries against
LLVM ground truth, across different optimization levels, did
not reveal any underestimation of prepared arguments. These
results confirm that the assumption that standard compilers
always explicitly (re)set argument registers after a direct (and
not only indirect) call is safe. For nonstandard or future
compilers that may deploy inter-procedural write elimination
optimizations, a possible solution is to continue backward
analysis from indirect callsite cs2 until another indirect call
cs1 is found instead of a direct call: since the compiler does
not know the target of cs1 (or else it would have been a direct
call), it shall reset all required arguments for cs2, making
our backward analysis between indirect calls safe by design.

4) Conservativeness: As with the callee analysis, TypeAr-
mor’s callsite analysis should be conservative and therefore
only allow for overestimation of the argument count. An
interesting case to consider is how the analysis performs for
indirect callsites inside wrapper functions. Such functions
may not need to reset all argument registers, but simply
‘pass them through’ directly from its caller. However, if the
wrapper has its address taken, and is only called through
indirect functions, our backward analysis fails to find any
incoming edges to the basic blocks and must give up. In
order to be conservative, TypeArmor then decides that the
callsite inside the wrapper prepares the maximum number
of arguments.

To improve static analysis results for callsites, we com-
plement TypeArmor to accept profiling data to improve its
CFG. Consider above scenario of an indirect callsite inside a

pr_response_flush

#define RESPONSE_WRITE_NUM_STR(strm, fmt, numeric, msg) \
 pr_trace_msg(trace_channel, 1, (fmt), (numeric), (msg)); \
 if (resp_handler_cb) \
 pr_netio_printf((strm), "%s", resp_handler_cb(resp_pool,(fmt),\
 (numeric), (msg))); \
 else \
 pr_netio_printf((strm), (fmt), (numeric), (msg));

void pr_response_flush(pr_response_t **head) {

 RESPONSE_WRITE_NUM_STR(session.c->outstrm, "%s %s\r\n",
 last_numeric, resp->msg)

pr_response_flush

... ...
426e65: mov 0x5ea4c(%rip),%rdi
426e6c: mov 0x8(%rbx),%rdx
426e70: mov 0x10(%rbx),%rcx
426e74: mov $0x463a00,%esi
426e79: xor %eax,%eax
426e7b: callq *%r8
... ...

... ...
426d51: callq 434960 <pr_trace_msg>
426d56: mov 0x5eb73(%rip),%r8
426d5d: test %r8,%r8
426d60: mov 0x67c79(%rip),%rax
426d67: mov 0x38(%rax),%r15
426d6b: jne 426e65

Figure 5. Partial disassembly of the pr response flush function in
ProFTPD that illustrates the working of our callsite analysis. The indirect
call instruction at offset 0x426e7b maps to the call to resp handler cb.
TypeArmor’s backward analysis finds that the basic block that ends with this
indirect call writes to the first four arguments and thus continues analysis at
incoming basic blocks. Only one such block exists and it performs a write
operation on the fifth argument register (test %r8,%r8). Since the path
that leads to this block ends with a call to pr trace msg, TypeArmor
concludes that the indirect call callq *%r8 prepares at most 5 arguments.

wrapper function. If a profile run finds an edge from another
callsite to the wrapper, our static analysis can continue
its backward analysis and possibly reduce the number of
allowed arguments.

5) Example of Operation: Consider
pr response flush from ProFTPD, which is depicted
in Figure 5. Notice the indirect call located at offset
0x426e7b which maps to resp handler cb; a variadic
function that takes two fixed arguments. By analyzing the
basic block, we infer that at least four argument registers
are live (due to the 4 mov instructions). Since there is no
information for the two additional argument registers (r8
and r9), through recursive analysis, TypeArmor discovers
all basic blocks directly pointing to 0x426e65. For this
particular scenario, one such block exists, starting at
0x426d56. This block contains an instruction that moves
a value into register r8, therefore this callsite is marked
to hold a fifth argument. For inferring if r9 is used as
well, the analysis further proceeds and finds one basic
block pointing to 0x426d56. This block contains a return
edge from pr trace msg, thus r9 cannot be used as an
argument register. As a result of the backward analysis,
TypeArmor concludes that the callsite 0x426e7b prepares
at most five arguments, one more than the actual number
of prepared arguments (strm, fmt, numeric and msg).

C. Return Values

Adding information about return value usage improves the
precision of TypeArmor’s CFI implementation: if we find a
callsite that expects a return value (a non-void callsite), it

should never target a callee that does not prepare a return
value (void functions). Extracting return usage information
from callsites and callees is similar to the previously de-
scribed callee and callsite analysis and is again conservative:
a void callsite is allowed to target both void and non-void
callees.

1) Non-void Callsites: The detection of non-void callsites
(i.e., callsites that expect a return value), is done by search-
ing for read-before-write operations on the the register that
holds return values (rax for the System V ABI). In essence,
we apply the forward analysis as used by our callee analysis,
but now starting from the callsite, and only for rax. The
difference is that we keep the analysis intra-procedural in
order to remain conservative.

2) Void Callees: We detect void functions by applying the
previously described backward analysis at the exit points of
a function (exit points are basic blocks that end with a ret
instruction). The backward analysis only searches for write
operations on rax which may indicate a set return value.

In order not to break programs, our non-void callsite anal-
ysis is conservative and marks a callsite as void (allowing it
to target both void and non-void functions) if no read-before-
write on return registers is found (the callsite may pass the
return value to a caller directly). Similarly, conservativeness
at the callee results in an underestimation of the number
of void functions: the compiler may use return registers
as scratch registers, which we cannot detect by looking at
disassembled instructions only. We describe the precision of
our return value analysis in Section VIII.

Note that if a particular ABI specifies that multiple
registers may be used to hold return values (like the System
V ABI allows callees to use the register pair rax:rdx),
TypeArmor could be extended to perform a similar analysis
on those as well.

V. RUNTIME ENFORCEMENT

In this section, we describe how TypeArmor uses the
results from the static analysis, discussed in Section IV, to
provide security guarantees at runtime. During application
load time, TypeArmor’s runtime component instruments the
application’s binary and loaded libraries to enforce our CFI
and CFC policies. We achieve this by adding integrity
and containment code at the forward edges and labels at
function entry points. The runtime component can be split
in three parts: (i) shadow code memory preparation, (ii) CFI
enforcement, and (iii) CFC enforcement.

A. Shadow Code Memory Preparation

At every library load, this part of TypeArmor’s runtime
component allocates memory to store instrumented code,
dubbed shadow code (as implemented by Dyninst [8]). The
shadow code is essentially a copy of the original code that
also contains the instrumentation of the callsites. Program
execution is performed using the instrumented shadow code.

Whenever we reach an indirect callsite during normal pro-
gram execution, the instrumentation code at this location
performs an integrity check between the type of the callsite
and the type of the callee. If the types are compatible with
each other, the callsite branches to the callee. Note that the
branch target of the callsite still remains in the original
code region. Therefore, we replace the beginning of each
AT function in the original code with a jump instruction
that jumps to the corresponding function in the shadow code
region.

We perform the integrity check by retrieving and process-
ing the function’s label, located right before the function
entry point in the original code region. Using this strategy,
we do not have to ensure that our label does not overwrite
code since the code that is executed is located in the shadow
code region. Choosing the right label is not an easy task
because we have to verify that this label does not occur at
locations other than AT functions.

We tackle this problem with an approach similar to the
pointer masking technique discussed by Wahbe et. al. [31].
After moving all the code to the shadow code region, the
unused locations in the original code region (i.e., all but
AT function entry points) are filled with trap instructions2.
Furthermore, during program execution, the integrity check
that is performed at indirect callsites (further discussed in
Section V-B1) first masks the target address, so it can only
point to the original code region, before continuing the
execution. Using this strategy, indirect callsites can only
point to compatible AT functions.

Note that without the additional instrumentation for type
compatibility checks, the implementation with the shadow
code region results in a coarse-grained CFI solution for
forward edges, in which indirect callsites can target all AT
functions without any restrictions.

B. CFI Enforcement

TypeArmor instruments binaries for enforcing that call-
sites can only target functions with a compatible type. This
essentially means (i) a callsite with a higher number of
prepared arguments can target all the functions that any
callsite with a lower number of prepared arguments can also
target, but not vice versa, and (ii) a callsite that expects a
return value can only target functions that return a value,
whereas a callsite that does not expect a return value can
target both functions that do and do not return a value.
To implement these policies, TypeArmor has to instrument
both, callsites and callees, based on the information collected
through static analysis (see Section IV).

1) Callee instrumentation: We label each AT function
(i.e., prepend it with a magic number) similar to the original
instrumentation scheme of Abadi et. al. [7]. In the context of
TypeArmor, there are seven possible labels (no arguments (0)

2Byte 0xCC is a trap instruction and disassembles to int3.

to all arguments (6)), therefore, we use a 3-bit representation.
In addition, we use one more bit to represent whether the
function returns a value. We use 1 to encode void functions
and 0 for functions that return a value. This is an important
design decision for the callsite instrumentation, because
callsites that expect a return value need to be handled in
a special way (i.e., they can only target non-void functions)
and this allows us to do it with just one extra instruction.
This is further explained in Section V-B2.

In practice, we use a 4-byte label and encode the function
type using four bits of the label. For the return type, we use
the least significant bit and, for the number of arguments, the
adjacent three bits of the label. For example, we represent
the bits of a void function that has four arguments according
to the static analysis as 1001.

To have a unique combination of four bytes that does not
occur at any other code location, we choose 0xCCCCCC40
as a base label and use the four least significant bits to
encode the function type. This form is suitable because all
unused bytes are set to the trap instruction with which also
the original code region is filled (see Section V-A). The
upper half of the least significant byte is set to four, because
regardless of the value of the lower half of the byte, this
byte assembles into the REX instruction prefix for the trap
instruction3. Since REX has no effect when combined with
the trap instruction, this label does not lead to valid targets
for an attacker.

2) Callsite instrumentation: At each callsite, TypeAr-
mor’s runtime component inserts a check to determine if the
target is legal as per the CFI policy. It does so by retrieving
the callee’s label, decoding the type and checking if the
result is compatible with the callsite. The instrumented check
does the following:

1) Get the address of the target.
2) Mask the target address to force the callsite to point

into the original code region.
3) Read the target’s memory at target −4 to get the label.
4) Apply xor at the label with the value 0xCCCCCC40.

Note that we do not explicitly check if this part of the
label was correct. If the label was incorrect, the check
for the number of arguments (step 6) fails, since the
result represents an unexpected value.

5) Only for callsites that expect a return value: make sure
that the last bit is 0 (i.e., the target function does return
a value) which is done by applying a right rotate by
1 bit on the label. Note that if the callsite targets a
void function, the subsequent check fails, since the bit
rotation results in a large value.

6) Using an unsigned comparison, check if the resulting
value is below or equal to the (hardcoded) number

3In little endian, the label 0xCCCCCC40 would be represented as 0x40
0xCC 0xCC 0xCC in memory, which assembles to the code REX INT3;
INT3; INT3.

of arguments the callsite is expecting. The range of
possible values for callsites that expect a return value
is 0 − 6 and for callsites that do not expect a return
value, the range is 0 − 13. Note that the latter range
also includes the return type bit.

As an example, consider the case where an indirect callsite
which prepares four arguments and expects a return value
tries to target a void-typed function that expects at least one
argument. This function is assigned the label 0xCCCCCC43.
At the callsite (after masking the target address, retrieving
the label, and xoring the label with 0xCCCCCC40) a right
rotate of 1 bit is performed, because the callsite expects a
return value. This results in the value 0x80000001. Subse-
quently, the check for the number of arguments fails, since
the resulting value is larger than 4, i.e. the prepared number
of arguments at the callsite.

C. CFC Enforcement

We enforce CFC by scrambling unused registers at indi-
rect callsites. Using this strategy, we essentially enforce a
zero percent underestimation rate at the callee, at the cost
of losing the ability to detect ongoing attacks, but instead
silently crashing. Similarly, CFC scrambles the unused re-
turn register rax at return instructions of void functions so
that we eliminate overestimation of non-void callsites.

As an example, consider an AT function f that accepts
five arguments, but for which TypeArmor conservatively con-
cludes that it accepts at least two arguments. Now, consider
an indirect callsite cs for which TypeArmor assumes that it
sets no more than three arguments. Without enforcing CFC,
cs is allowed to target f . By enabling CFC, TypeArmor
instruments cs in such a way that the last three argument
registers (i.e., rcx, r8, and r9) are initialized with a random
values at the callsite. The used random values are generated
and inserted into the instrumentation code during load time.
Observe that this does not change the fact that cs is allowed
to target f . What it does enforce, however, is that if f
enters a path that uses the 4th and 5th argument registers,
the program is likely to crash as their values are no longer
valid. Notice that we use random values (precomputed at
load time) to initialize the argument registers and not fixed
ones (such as zero). This is on purpose to avoid the risk
of attacks based on malicious control flows that leverage a
known state of the argument registers.

VI. MITIGATING ADVANCED CODE-REUSE ATTACKS

In this section, we discuss how effective TypeArmor is
in stopping advanced code-reuse attacks (CRAs). Table I
presents a short summary of recently published CRAs that
rely on control-flow diversion and how TypeArmor addresses
them. Note that all publicly available exploits that are not
pure data-only attacks (like Control Flow Bending [9]) are
successfully mitigated.

Table I
TypeArmor STOPS EXISTING CODE-REUSE EXPLOITS. SINCE TypeArmor

SPECIFICALLY TARGETS X86 64 BINARIES, THE IE 32-BIT COOP
EXPLOIT IS OUT OF SCOPE. NOTE THAT EVEN WITHOUT DEPLOYING

CFC, TypeArmor STOPS ALL EXPLOITS.

Exploit Stopped? Notes
COOP ML-G [26]

– IE (32-bit) 7 Out of scope
– IE 1 (64-bit) X(CFI) Argcount mismatch
– IE 2 (64-bit) X(CFI) Argcount mismatch
– Firefox X(CFI) Argcount mismatch

COOP ML-REC [13]

– Chrome X(CFI)
Argcount mismatch,
Void target where non-
void was expected

Control Jujutsu [16]
– Apache X(CFI) Target function not AT

– Nginx X(CFI) Void target where non-
void was expected

In the following sections, we discuss advanced CRAs in
more detail, COOP in particular. First, in Section VI-A, we
analyze a set of server applications for COOP gadgets while
TypeArmor is in place and explore if COOP is still possible.
Next, in Section VI-B, we walk through practical COOP
exploits for Internet Explorer, Firefox, and Chrome to show
how TypeArmor stops these attacks. In Section VI-C, we
discuss how TypeArmor stops Control Jujutsu exploits [16].
In Section VI-D, we discuss further possibilities of COOP
exploitation. Finally, we conclude in Section VI-E with a
discussion on pure data-only attacks such as those presented
by Control-Flow Bending [9].

A. Effectiveness against COOP

Armed with the knowledge that COOP relies on unused
argument registers to enable data flow between gadgets
(Section II), we are interested in how many of those spurious
arguments remain when TypeArmor is in place. We applied
TypeArmor’s static analysis on a large set of server appli-
cation binaries and compared results against ground truth
obtained by LLVM (more details in Section VII). Table II
shows, for each server application, (i) the number of indirect
call instructions (cs), (ii) the number of callsites for which
our analysis reports the exact number of prepared arguments
as defined at the source level (0), and (iii) the number of
callsites for which we overestimate the number of prepared
arguments by 1, 2, . . . (+N columns).

From Table II, we conclude that TypeArmor is able to
determine the exact number of prepared arguments for
103 out of 130 indirect callsites (geometric mean). While
these numbers are fairly promising already, the missing 23
callsites are potentially dangerous and could still be used
as the initial COOP gadget by an attacker. To investigate
this further, we operated a heuristic search for all possible
main-loop (ML-G) and recursive (REC-G) gadgets for each
of the server applications. We depict overestimation results

Table II
ACCURACY OF TypeArmor COMPARED TO THE GROUND TRUTH FOR

DIFFERENT SERVER APPLICATIONS. THE NUMBERS IN THE COLUMNS
DEPICT HOW FAR OFF THE ANALYSIS IS IN TERMS OF NUMBER OF

ARGUMENTS (I.E., HOW MANY ADDITIONAL ARGUMENTS ARE
ERRONEOUSLY ASSUMED BY TypeArmor) FOR THE CALLSITES IN THE

ANALYZED SERVER APPLICATIONS.

Overestimation
Server #cs 0 +1 +2 + 3 +4 +5

Exim 76 65 6 3 1 0 1
lighttpd 54 47 0 2 0 0 5
Memcached 48 41 3 2 0 2 0
Nginx 218 161 35 16 3 1 2
OpenSSH 134 130 4 0 0 0 0
ProFTPD 85 68 10 3 2 2 0
Pure-FTPd 10 8 1 0 1 0 0
vsftpd 4 2 2 0 0 0 0
PostgreSQL 491 392 52 22 9 3 13
MySQL 7532 5771 789 366 269 125 212
Node.js 2452 2113 226 37 25 10 41

geomean 130 103 15 11 6 5 10

for these possible gadgets in Table III (not completely
unexpected, we only found reasonable gadgets in the C++
binaries—MySQL and Node.js).

For the main loop gadgets, TypeArmor accurately identi-
fied the argument count for 94% of the callsites in MySQL
and for 95% in Node.js. Similarly, for the recursive gadgets,
we identified the exact argument count in 86% (MySQL)
and 96% (Node.js) of the cases. This means, however, that
the remaining callsites may allow data to flow via the over-
estimated argument register(s) as identified by TypeArmor:
these registers are not explicitly initialized with an argument
value and may pass data set by one vfgadget to the next.
As our automated gadget identification is not precise, we
manually analyzed the remaining gadgets that might allow
implicit data flow (data flow via spurious arguments). As
noted in Section II, the registers in question might still be
unusable for data flow due to destructive updates in between
the indirect calls.

For the main loop gadgets in MySQL, we found five
callsites that were mistakenly reported to have an overes-
timated argument (caused by the fact that LLVM IR blocks
may still get optimized or shuffled when bitcode is lowered
to machine instructions), leaving only five callsites with
true overestimation. For Node.js, overestimation affects six
callsites. Manually analyzing the reported gadgets, however,
revealed that no implicit data flow is possible for these
callsites. Results for recursive gadgets look equally promis-
ing: overestimation of prepared argument count occurred
for 38 callsites in MySQL and two in Node.js. Manual
analysis revealed that four gadgets were wrongly identified
as REC-Gs, 13 could not set up an implicit data flow due
to destructive updates, and for 23, CFC prevents data flow.

Table III
ACCURACY OF TypeArmor COMPARED TO THE GROUND TRUTH FOR

DIFFERENT SERVER APPLICATIONS. THE VALUES ARE GIVEN IN
RESPECT TO CALLSITES BELONGING TO A SPECIFIC TYPE OF GADGET.

Overestimation
Server # cs 0 +1 + 2 +3 + 4 +5

ML-G callsites
MySQL 173 163 3 1 1 0 5
Node.js 124 118 6 0 0 0 0
geomean 146 139 4 1 1 0 5

REC-G callsites
MySQL 278 240 14 11 2 4 7
Node.js 57 55 2 0 0 0 0
geomean 126 115 5 11 2 4 7

B. Stopping COOP Exploits in Practice

In the following sections, we analyze the published
exploits for Internet Explorer (IE), Firefox [26], and
Chrome [13] and show how TypeArmor stops these attacks.

1) Exploit on 64-bit IE: The original COOP paper
presents two exploits against 64-bit IE, both using the
main loop gadget ML-G shown in Figure 6 (A). After
initialization, the function sub 18072E9F0 enters a loop
and remains looping until edi reaches zero. The loop itself
(i) loads a (counterfeit) object by setting the first argument
(the this pointer): mov (%rsi),rcx, (ii) prepares and calls
a virtual function: call *0x10(%rax), (iii) increases rsi
to point to the next virtual function: add $0x8, %rsi, and
(iv) decreases the loop counter: dec edi. By controlling
memory near (%rsi), the exploit can chain virtual functions
and launch the attack4.

Let us now walk through TypeArmor’s callsite analysis.
It starts at the basic block that contains the indirect call
instruction and concludes that only the first argument (rcx)
is set in this block. Since there is no conclusive result
for the remaining argument registers yet, it moves to the
previous block which contains the loop condition (test
%edi,%edi). As this block does not touch any argument
register, it continues by searching for incoming edges to
this block. The analysis finds two blocks: the entry block
of the function, and the loop block that directly follows the
indirect call instruction (ending with jmp %0x18072ae09).
By following the second edge, we again see no write
operations on argument registers, and the analysis must
continue by searching for incoming edges to add %0x8,
%rsi. It is at this moment that TypeArmor hits the call
*0x10(%rax) instruction and can stop its analysis: the call
instruction forces the compiler to reset any argument register
if it is required by the program later on. So far, TypeArmor
observed only one argument register to be set and concludes
that this callsite sets at most one argument.

4Note that the Microsoft x64 calling convention is different from the
System V AMD64 ABI: only the first four arguments are passed via
registers, namely: rcx, rdx, r8, r9.

B

sub 0x38,%rsp
mov 0x10(%rcx),%rax
movups 0x18(%rcx),%xmm0
mov %rdx,%r8
mov (%rax+8),%r9
lea 0x20(%rsp),%rdx
mov 0x8(%r9),%rcx
movdqu %xmm0,0x20(%rsp)
call *0x30(%r9)
add 0x38,%rsp
retn

sub_1803B8C14

C

mov 0x10(%rcx),%rax
movsxd %edx,%r8
add %r8,%r8
mov (%rax,r8,8),%eax
retn

sub_180AFDE10

A
mov %rbx,0x8(%rsp)
mov %rsi,0x10(%rsp)
push rdi
sub 0x20,%rsp
mov 0x50(%rcx),%rsi
mov 0x4c(%rcx),%edi
mov %rcx,%rbx

lea 0x48(%rbx),%rcx
call 0x180001f20
mov %rbx,%rcx
mov 0x30(%rsp),%rbx
mov 0x38(%rsp),%rsi
add %0x20,%rsp
pop %rdi
jmp 0x1872ea40

mov (%rsi),%rcx
mov (%rcx),%rax
call *0x10(%rax)
add %0x8,%rsi
dec %edi
jmp %0x18072ea09

test %edi,%edi
jg 0x180de8a5c

False True

True

Fall through

sub_18072E9F0

C IE COOP Chain Gadget

B IE COOP Chain Gadget

A IE COOP Loop Gadget

Figure 6. Gadgets used in COOP’s 64-bit IE exploit

TypeArmor thus ensures that the indirect callsite in the
loop gadget may target only those functions that accept zero
or one argument. Looking at the chain of virtual functions,
however, we find several vfgadgets that use a minimum
of two arguments. One such function is sub 1803B8C14,
illustrated in Figure 6 (B). The first two argument registers
rcx (via mov 0x10(%rcx),%rax), and rdx (via mov %rdx,
%r8) are read-before-write, and TypeArmor thus concludes
that this is a function that expects at least two arguments.
TypeArmor’s many-to-many map now enforces that the
indirect callsite in the loop gadget (that prepares at most
one argument) is not allowed to call sub 1803B8C14
(which expects at least two arguments). TypeArmor thus
successfully stops the exploit.

The second COOP exploit against IE relies on the same
ML-G, but deploys a different chain of virtual functions.
Similar to the first exploit, it uses a virtual function that
expects at least two arguments (shown in Figure 6 (C)—mov
0x10(%rcx),%rax) and movsxd %edx,%r8. Therefore, Ty-
peArmor also stops this exploit.

2) Exploit on 64-bit Firefox: We examined COOP’s Fire-
fox exploit and found that the ML-G used for the Firefox
attack prepares only one argument (the this pointer, in
rdi). Similar to what we observed for the IE exploits,
this is correctly inferred by TypeArmor’s callsite analysis.
Moreover, the gadget chain relies on implicit data flows
through argument registers and consists of functions that ex-
pect at least two arguments, among others. This means that
TypeArmor successfully stops the Firefox COOP exploit.

3) Exploit on Chrome: In contrast to the ML-G gad-
gets used by the previous exploits, the improved COOP

attack against Google Chrome alternates between two re-
cursive gadgets (REC-G) to chain virtual functions. By
analyzing the gadget chain, we find that three con-
secutive gadgets use rsi to pass data. Looking at
the SkComposeShader::contextSize() REC-G, how-
ever, we find that TypeArmor identifies that its second indi-
rect call (used to direct control flow to the second REC-G,
blink::XMLHttpRequest::AddEventListener()), pre-
pares only one argument. This means that TypeArmor’s CFC
enforcement scrambles data stored in rsi and thus breaks
the exploit.

Additionally, the first indirect callsite in
SkComposeShader::contextSize() is non-
void, meaning that it can only call functions
that set rax. One of the chained vfgadgets,
TtsControllerImpl::SetPlatformImpl(), however, is
of type void and never writes to rax. Thus, TypeArmor’s
CFI mechanism stops this attack as well.

C. Control Jujutsu

The two Control Jujutsu exploits [16] combine data and
control-flow diversion attacks: the authors assume a (re-
stricted) memory write to prepare a certain state, followed
by overwriting a function pointer. The new function pointer
stills targets a function entry, but one that can use the pre-
pared state to give the attacker control over the program [16].
Inspecting the attacks with TypeArmor in mind, we can
infer that we stop both attacks: (i) the attack against Nginx
diverts a non-void callsite in ngx output chain to target
a void function ngx execute proc, which TypeArmor
correctly detected as such; (ii) the attack against Apache

HTTPD diverts a callsite in ap run dirwalk stat to
invoke a target function that does not have its address taken
(piped log spawn), which TypeArmor does not allow.
Although the authors argue that in this scenario the attack
can still succeed by calling ap open piped log ex
instead (which wraps piped log spawn), this is not prop-
erly evaluated. By looking at the source code, it is likely that
this extra level of indirection corrupts the attacker’s prepared
state.

D. COOP Extensions

While we demonstrated in Section VI-B how TypeArmor
stops all published COOP exploits, we now discuss the
feasibility of advanced, previously unexplored techniques
that could extend COOP.

1) Data Flow in COOP: The original COOP paper
presents multiple approaches to pass arguments between vf-
gadgets, distributed among three classes: (i) data flow using
unused argument registers, (ii) data flow using overlapping
counterfeit object fields or global variables, and (iii) data
flow by relying on arguments actually passed to the callee.
Note that the first class specifically targets x86 64, as it
mostly uses registers to pass arguments to a function. We
refer to this class as implicit data flow and for the remaining
two as explicit data flow.

As the published COOP exploits demonstrate, implicit
data flow is often key to successful exploitation: in many
cases, ML-Gs and REC-Gs prepare only few arguments for
the callsite, leaving the attacker with many registers she can
use for data flow. Having more registers at her disposal,
in turn, increases the probability of finding vfgadgets that
implement useful functionality on these registers. One has
to make sure, however, that the main-loop (or recursive)
gadget does not overwrite said registers in between virtual
function calls.

Explicit data flow, on the other hand, is characterized by
enabling data flow using actual arguments to the vfgadget.
Most notably, this also includes the first argument (which,
for C++, depicts the object pointer). By overlapping multiple
objects of different classes, two vfgadgets may operate on
the same (overlapped) object field. This idea can be extended
to other arguments as well, which is what COOP uses to
enable data flow for their 32-bit IE exploit on Windows x86.
In this approach, it uses an initial gadget that always passes
the (same) field of the initial counterfeit object to the various
vfgadgets. This field can then be used to pass arguments
between gadgets and requires vfgadgets to dereference the
corresponding argument and read from or write to it. Such
field is defined as argument field [26].

2) Impact of TypeArmor on Data Flow: TypeArmor ef-
fectively prevents implicit data flow. In Section VI-A, we
show that static analysis is accurate enough to precisely
determine the correct argument count for indirect callsites
in many cases. Consequently, CFC scrambles all argument

registers that are known to be unused. This prevents implicit
data flow by design, both for ML-Gs and REC-Gs.

If TypeArmor fails to determine the exact argument count
a callsite prepares, an attacker might be able to use this
discrepancy to enable data flow. Note, however, that com-
pared to the original COOP setting, she is still severely
constrained. First, she does not have as many registers
to choose from, which lowers the probability of finding
vfgadgets with the desired semantics. Second, CFI is still in
place, which significantly reduces the target set. In fact, our
manual analysis shows that even for those cases, TypeArmor
still makes implicit data flow impossible.

Looking at explicit data flows, we distinguish two cases.
First, data flows using overlapping object fields, for which
we refer to the original COOP paper: it already concludes
that these scenarios are difficult to apply in practice. The
second case enables a different class of COOP data-flow
semantics, which relies on the presence of an argument field.
As with the first scenario, however, this is hard to realize
in practice since not passing the particular argument may
heavily interfere with the program’s semantics.

Advanced argument-passing techniques can be tackled
by source-level CFI solutions: they have access to type
information of the callsite, and can thus enforce a match
to types of the callee. In particular, such information can
reduce the number of gadgets applicable for data flow via
argument fields (object fields that are passed as parameter
to a vfgadget by the ML-G). If an analysis determines an
argument field to be a pointer, the ML-G’s callsite can only
target vfgadgets that expect a pointer for the corresponding
argument and vice versa. We anticipate that this argument
type distinction is also possible at the binary level and
consider it as something to explore in future work.

Although we confirm that advanced COOP exploitation is
still possible in theory, we stress that a significant reduction
of the attack surface at the binary level is possible. In
fact, with TypeArmor in place, only the really elaborate, but
inherently constrained, options for argument passing survive
for building working COOP exploits.

E. Pure Data-only Attacks

The Control-Flow Bending (CFB) paper evaluates the
general effectiveness of ideal CFI solutions and evidences
their limitations against sophisticated CFG-aware attacks [9].
The authors show that CFB attacks against CFI solutions that
are complemented by a shadow stack are more difficult, but
sometimes still possible.

As any other CFI solution, TypeArmor cannot stop pure
data-only attacks. However, attacks that use an arbitrary
memory write to overwrite a function pointer can still
potentially be stopped: if the attacker overwrites a pointer
to point to a function that expects more arguments than
the original target, or if the new target assumes that certain

Table IV
RUN-TIME PERFORMANCE OVERHEAD FOR SERVER APPLICATIONS.

IC/sec DEPICTS THE NUMBER OF INDIRECT CALLSITES EXECUTED PER
SECOND ON AVERAGE. CFI DEPICTS THE OVERHEAD OF TypeArmor’S

CFI IMPLEMENTATION (CHECKING CALLEE LABELS BEFORE EACH
INDIRECT CALL INSTRUCTION). +CFC DEPICTS THE SLOWDOWN OF

TypeArmor’S COMPLETE CONFIGURATION.

Server IC/sec CFI +CFC

Exim 4,574 1.068 1.067
lighttpd 1,425,099 1.116 1.174
Memcached 72,519 1.014 1.017
Nginx 5,084,715 1.132 1.155
OpenSSH 78 1.021 1.013
ProFTPD 542,443 1.007 1.002
Pure-FTPd 17 1.020 1.013
vsftpd 24,024 1.025 1.051
PostgreSQL 18,024,485 1.160 1.205
MySQL 19,693,937 1.239 1.222
Node.js 1,965,955 1.061 1.055

geo-mean 110,157.9 1.076 1.086

callsite arguments that have been scrambled by CFC contain
a specific value, the attack will be stopped.

Through personal communication, the CFB authors shared
their exploit notes for the presented Apache and Wireshark
attacks; two attacks that work even in the presence of a
runtime shadow stack and ultimately overwrite a function
pointer at some point during the exploit. After analyzing
the exploits in depth, we conclude that these truly are pure
data-only attacks, and cannot be stopped by TypeArmor. It
is worth mentioning that even source-level CFI solutions
cannot stop these two attacks.

VII. PERFORMANCE

TypeArmor is implemented on Linux for x86 64. The
callee and callsite analysis component, outlined in Sec-
tion IV, is implemented in 5,532 lines of C++ code and
depends on the Dyninst v8.2.1 binary analysis framework
to disassemble machine code [8]. The runtime component,
outlined in Section V, also relies on Dyninst to perform
binary instrumentation and consists of 743 lines of code.
The prototype supports generic 64-bit ELF binaries as long
as they do not emit self-modifying code.

The evaluation testbed is a system equipped with an Intel
i5-2400 CPU 3.10GHz and 8GB of RAM. We ran our tests
on Ubuntu 14.04 x86 64 running kernel 3.13. We focus
our performance evaluation on popular Linux server applica-
tions, given that (i) they are widely adopted in the research
community for evaluation purposes, (ii) they are popular
exploitation targets, and (iii) they naturally contain a relevant
number of indirect callsites that can greatly benefit from the
protection offered by TypeArmor. Specifically, we evaluated
TypeArmor with three FTP servers (namely, vsftpd v1.1.0,
ProFTPD v1.3.3, and Pure-FTPd v1.0.36), two web servers
(Nginx v0.8.54 and lighttpd v1.4.28), an SSH server (the
OpenSSH Daemon v3.5), an email server (Exim v4.69), two

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

bzip2
libquantum

m
cf

sjeng
gcc

hm
m
er

sphinx3

h264ref

gobm
k

perlbench

lbm
m
ilc

dealII

nam
d

om
netpp

astar
povray

xalancbm
k

soplex

geom
ean

CFI
+CFC

Figure 7. Benchmark run time normalized against the baseline for the
SPEC CPU2006 benchmarks.

SQL servers (MySQL v5.1.65 and PostgreSQL v9.0.10), a
general-purpose distributed memory caching system (Mem-
cached v1.4.20), and a cross-platform runtime environment
for server-side web applications (Node.js 0.12.5, statically
compiled with Google’s v8 JavaScript engine). Finally, we
considered all C and C++ SPEC CPU2006 benchmarks for
completeness and direct comparison with prior work.

To benchmark the web servers and Node.js (which we
set up to serve a JavaScript page that mimics default web-
server behavior), we configured the Apache benchmark [1]
to issue 250,000 requests with 10 concurrent connections
and 10 requests per connection. To benchmark the FTP
servers, we configured the pyftpbench benchmark [4] to
open 100 connections and request 100 1 KB-sized files
per connection. To benchmark Memcached, we used the
memslap benchmark [2]. To benchmark the SQL servers,
we configured the Sysbench OLTP benchmark [6] to issue
10,000 transactions using a read-write workload. Finally, to
benchmark OpenSSH and Exim, we used the OpenSSH test
suite [3] and a homegrown script which repeatedly launches
the sendemail program [5], respectively. We configured all
applications and benchmarks with their default settings. We
ran all the experiments 11 times (checking that the CPUs
were fully loaded throughout the tests) and report the median
(with marginal standard deviation observed across runs).

To evaluate the impact of TypeArmor’s instrumentation
on runtime performance, we measured the time to complete
the execution of the benchmarks and compared against
the baseline. The baseline refers to the original version
of the benchmark with no binary instrumentation applied.
Table IV details the normalized run time for two configu-
rations. The CFI configuration refers to TypeArmor solely
enforcing forward-edge CFI as outlined in Section V-B. As
shown in the table, this configuration introduces a noticeable
performance impact (7.6% on average, geometric mean),
owing to about half of the applications executing millions
of indirect callsites per second. The overhead is compa-

Table V
STATIC ANALYSIS RESULTS AND FORWARD-EDGE TARGET COUNT COMPARISON. THE Callsites AND Callees GROUPS REPORT STATISTICS ON (I) HOW

MANY CALLSITES/CALLEES WERE FOUND, (II) IN HOW MANY CASES OUR STATIC ANALYSIS CORRECTLY IDENTIFIED THE NUMBER OF SET/USED
ARGUMENTS, AND (III) THE NUMBER OF CORRECTLY DETECTED NON-VOID CALLSITES AND VOID CALLEES. THE Targets GROUP REPORTS THE

MEDIAN NUMBER OF TARGETS ACROSS DIFFERENT CFI POLICIES: COARSE-GRAINED CFI (AT), AND TypeArmor’S CFI AND CFI+CFC.

Callsites Callees Targets (median)
Server # args (perfect%) non-void (correct%) # args (perfect%) void (correct%) AT CFI +CFC

Exim 76 65 (85.53) 44 (67.69) 615 495 (80.49) 32 (17.98) 615 41 40
lighttpd 54 47 (87.04) 21 (84.00) 353 311 (88.10) 19 (20.00) 353 50 47
Memcached 48 41 (85.42) 15 (100.00) 236 210 (88.98) 11 (7.91) 236 14 14
Nginx 218 161 (73.85) 155 (90.64) 1,111 869 (78.22) 57 (22.62) 1,111 352 254
OpenSSH 134 130 (97.01) 67 (100.00) 715 625 (87.41) 48 (13.19) 715 32 6
ProFTPD 85 68 (80.00) 62 (93.94) 1,188 1,045 (87.96) 69 (26.74) 1,188 390 376
Pure-FTPd 10 8 (80.00) 3 (50.00) 201 169 (84.08) 0 (0.00) 201 6 4
vsftpd 4 2 (50.00) 1 (100.00) 445 371 (83.37) 29 (12.03) 445 12 12
PostgreSQL 491 392 (79.84) 328 (87.23) 9,312 8,054 (86.49) 494 (15.13) 9,312 2,357 2,304
MySQL 7,532 5,771 (76.62) 4,783 (70.97) 9,961 6,977 (70.04) 1,277 (36.60) 9,961 4,158 3,698
Node.js 2,452 2,113 (86.17) 1,199 (91.39) 34,703 28,698 (82.70) 3,444 (22.26) 34,703 4,804 4,714

geomean 130 103 (79.19) 62 (83.47) 1,270 1,058 (83.26) 98 (17.89) 1,270 141 110

rable to TypeArmor’s complete (and default) configuration
(CFI+CFC), which accounts for TypeArmor also clearing
unused argument registers at each callsite (8.6% on average,
geometric mean). On applications that execute less than
a million indirect callsites per second, TypeArmor has a
marginal performance impact.

To obtain standard and comparable performance results
across TypeArmor’s configurations, we measured the time
to complete the SPEC CPU2006 benchmarks and compared
it against the baseline. Again, the baseline refers to the
original version of the SPEC2006 benchmarks with no bi-
nary instrumentation applied. We present results in Figure 7
and confirm the general behavior observed for the server
applications, with an average performance overhead of only
2.4% for TypeArmor in a CFI-only configuration and of
2.5% for TypeArmor in the default (CFI+CFC) configuration
(geometric mean).

Overall, TypeArmor imposes a relatively low runtime
performance impact on all the test programs considered. This
confirms that our lightweight instrumentation is successful
in producing a runtime overhead that is comparable to,
or even faster than existing binary rewriting-based CFI
solutions [34].

VIII. SECURITY ANALYSIS

Common evaluation metrics used to assess the effec-
tiveness of defense mechanisms have been questioned by
the community [9]. In this paper, we acknowledge that
additional research is required for converging on a more
efficient security evaluation system. However, for complete-
ness and comparability with similar works, in this section
we evaluate TypeArmor using security metrics proposed by
other systems.

Table V presents accuracy results for (i) callsite and (ii)
callee analysis. In addition, it includes (iii) the median
number of legal indirect callsite targets as enforced by

existing (binary-level) address-taken-based solutions and Ty-
peArmor’s policies (targets). To validate TypeArmor’s static
analysis results—ensuring no underestimation occurs at the
callsite and no overestimation is observed at the callee—and
to compute the accuracy in detecting return usage and exact
number of prepared/consumed arguments, we compared
TypeArmor’s results against the ground truth generated from
source code. For this purpose, we (i) relied on the LLVM
framework to compile source code into an intermediate
representation (LLVM IR) at different optimization levels,
(ii) extracted ground truth numbers (number of arguments
prepared for each indirect callsite, number of arguments
consumed for each function, and the list of callsites/callees
that expect or set a return value), and (iii) lowered LLVM
bitcode to machine code (using the same optimization levels)
on which we ran TypeArmor’s static analysis. Table V
reports results for -O2, but we observed similar results at
other optimization levels. For this experiment, we excluded
libraries to ensure a fair comparison across server applica-
tions. In addition, we included callee analysis results (second
group in Table V) for all functions in the program.

Table V shows that the static analysis results are very
accurate in identifying the exact number of used arguments
(79% for callsites and 83% for callees, respectively, geo-
metric mean). The forward static analysis results are slightly
better than those obtained with the backward static analysis,
given that the stop condition for the callee analysis is
stronger than the one used for callsites. Nonetheless, results
are encouraging, given that TypeArmor can, overall, compute
the exact number of source-level arguments in more than
75% of the cases, while operating entirely at the binary
level and in a conservative fashion. Similarly, with a success
rate of 83% (geometric mean), results for detecting non-
void callsites are also accurate. On the other hand, detecting
void functions is much harder: we detect less than 20% of

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
a
ti

o
 o

f
T
a
rg

e
ts

Ratio of Indirect Callsites

MySQL CFI
MySQL CFC

OpenSSH CFI
OpenSSH CFC

PostgreSQL CFI
PostgreSQL CFC

Figure 8. CDF of legal indirect callsite targets enforced by TypeArmor’s
CFI and CFC policies.

the actual void callees. This is caused by the fact that rax
is used as scratch register in many cases, resulting in an
underestimation of the number of void functions.

The targets column in Table V reflects the static analysis
results on the number of legal targets, measuring the strength
of CFI and CFC invariants. The AT column reports results
for existing state-of-the-art binary-level CFI solutions that
allow indirect callsites to target any address-taken func-
tion [24], [34]. This results in a CFI solution allowing
indirect callsites to target all the valid function entry points.
The CFI and +CFC columns report results for TypeArmor
deployed in a CFI-only configuration and in a full CFI+CFC
configuration, respectively.

Table V shows that on average, TypeArmor is capable of
reducing the number of legal targets by roughly two orders
of magnitude (91% reduction on average for CFI+CFC,
geometric mean) compared to the conservative address-taken
strategy (AT) adopted in prior solutions. The results also
demonstrate the effectiveness of CFC, which can further
reduce the targets allowed by CFI alone (110 vs. 141 targets
on average).

For a more accurate view of the invariants enforced by
TypeArmor, we report a CDF in Figure 8 of legal callsite
targets. For clarity, we limit the CDF to CFI and CFC with
applications that (i) yield minimal target reduction compared
to source-level AT results (PostgreSQL, blue), (ii) contain
many indirect callsites and AT functions (MySQL, yellow),
and (iii) yield high reduction (OpenSSH, red).

Based on the CDF of Figure 8, we observe that CFC
results for each program follow the same trend as CFI.
This is inherent to the deployment of the callsite-oriented
invariants, with the number of indirect callsites being con-
stant. We observe that results for PostgreSQL, due to the
unusual internal structure of the program and the weaker
quality of the resulting invariants, are more conservative
than other cases, with over 90% of the indirect callsites
allowing 80% or more targets. This difference is due to

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

0' 0 1' 1 2' 2 3' 3 4' 4 5' 5 6' 6
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

C
al

ls
it
es

C
al

le
es

Buckets

Callsites Callees

Figure 9. Distribution of CFC buckets for MySQL. A tick (’) denotes a
bucket containing callsites/callees that expect and set return values.

the distribution of the argument count for AT functions: for
PostgreSQL, over 85% of the AT functions are detected as
consuming at least 0 or 1 argument. This means that as
soon as TypeArmor’s backward analysis finds that a callsite
prepares an additional argument, it must allow all those
85% as a possible target. To make this more concrete,
TypeArmor concludes that for OpenSSH, only 26 (out of
90) AT functions accept 0 or 1 argument. Encouragingly,
other programs exhibit a regular internal structure, resulting
in much stronger type-based invariants. For example, we
find that results for OpenSSH are impressive: for 90% of all
indirect callsites, CFC still yields an almost 50% reduction
of the legal targets. Moreover, for 35% of the callsites,
TypeArmor allows only 7% of all AT functions as valid
target.

To further analyze the distribution of possible callees
among callsites, Figure 9 depicts a histogram of the different
buckets that are enforced by TypeArmor’s CFC policy.
For each bucket, it shows the number of callees (red)
and callsites (yellow) that fall into it. Without return-use
information, the System V ABI enables six buckets: callees
that take at least 0 arguments, 0 to 1 arguments, 0, 1, or 2
arguments, . . . , callees that take any number of arguments.
By adding return use information (denoted with a tick ’ in
Figure 9), the number of buckets is doubled. As an example,
consider bucket 3. This bucket contains the callees that
expect 0, 1, 2, or 3 arguments, but not those that expect
at least 4 arguments or more. On the other hand, it contains
callsites that prepare at most 6, 5, 4, or 3, arguments, but not
2 or less. Another example is bucket 3’, which consists of
the same set of only callsites and callees that set and expect
a return value.

Figure 9 illustrates the intuitive effectiveness of TypeAr-
mor: there is a limited set of callsites (around 500 for
MySQL) that are allowed to target any AT function (over
6000), while there are many callsites (7500) that can target
only a limited amount of callees (less than 4000). Note that

Table VI
COMPARISON OF TypeArmor WITH SOURCE-BASED ADDRESS-TAKEN

(AT) ANALYSIS, AND STATE-OF-THE-ART SOURCE-LEVEL CFI
DEFENSES (IFCC [29]), IN TERMS OF AVAILABLE TARGETS PER

INDIRECT CALLSITE.

Targets (median)
Server CFI +CFC AT IFCC

Exim 40 67 3
lighttpd 47 59 6
Memcached 14 14 1
Nginx 254 518 25
OpenSSH 6 90 4
ProFTPD 376 402 3
Pure-FTPd 4 14 0
vsftpd 12 15 1
PostgreSQL 2304 2509 12
MySQL 3698 6097 150
Node.js 4714 7527 341

geomean 110 204 9

since MySQL is a C++ program, and thus rdi is often used
to hold the this pointer, we see almost zero callees in the
first two buckets.

Overall, we conclude that TypeArmor’s CFI and CFC
invariants yield a significant reduction in the number of legal
targets at indirect callsites.

A. Comparison with Source-level Techniques

Finally, we compare TypeArmor with source-level tech-
niques to assess the strength of the of constraints imposed
on indirect callsites. For this purpose, we evaluated a series
of well-known programs, and we compared TypeArmor with
an LLVM-based tool for address-taken (AT) analysis, and
state-of-the-art source-level CFI defenses, i.e., IFCC [29].
We present the results in Table VI. As expected, IFCC
significantly reduces the available targets of indirect callsites
compared to TypeArmor. However, note that for certain
programs (e.g., OpenSSH) TypeArmor performs equally
well, although applied at the binary level, and, in all cases,
TypeArmor yields the same or better results than source-
based address-taken analysis.

IX. RELATED WORK

Ever since the original CFI proposal by Abadi et. al. [7]
and the rise of advanced code-reuse attacks [9], [10], [15],
[18], [19], [26], [28], there have been several CFI techniques
proposed in the literature, targeting both source and binary
compatibility and with different strength of invariants. In
this section, we briefly review state-of-the-art CFI solutions
vis-à-vis TypeArmor.

Binary-level CFI. Realizing binary-level CFI in practice
is usually hard, since computing the CFG of a program is
an undecidable problem and perfect instrumentation usu-
ally incurs overheads. Therefore, there has been research
for CFI approximations, realized through coarse-grained
CFI [33], [34]. However, these approximations have been

demonstrated vulnerable [18]. Lockdown [24] and CFCI [35]
attempt to deploy fine-grained CFI schemes, and VTint [32],
vfGuard [25], T-VIP [17] focus on protecting just VTables
at the binary level. However, it was recently demonstrated
that even fine-grained schemes can be bypassed [9], [16]
and VTable protections without access to C++ semantics
are infeasible [26]. PathArmor shows how recent hardware
features can be used to deploy context-sensitive CFI with
low overhead [30], but, in absence of forward-edge context-
sensitive invariants, COOP attacks are still possible.

In contrast to these solutions, TypeArmor enforces strong
binary-level invariants based on the number of function
arguments, targeting exclusive protection against all these
advanced exploitation techniques that bypass fine-grained
CFI schemes and VTable protections, at the binary level.

Source-level CFI. Source-level solutions, such as IFC-
C/VTV [29], SAFEDISPATCH [21], CPI [23], and
ShrinkWrap [20] can realize CFI with increased accuracy. In
this respect, TypeArmor is an attempt to approximate source-
level accuracy at the binary level. Although TypeArmor is
less accurate than such source-level solutions, we argue in
this paper that, in the context of sophisticated attacks such
as advanced COOP extensions, it is questionable whether
additional accuracy that is provided by source-level solutions
is required. For most advanced techniques, such as all
publicly released COOP exploits, invariants as enforced by
TypeArmor may be sufficient and effective in practice.

X. CONCLUSION

In this paper, we presented TypeArmor, a new detection
and containment solution against advanced code-reuse
attacks. TypeArmor relies on binary-level static analysis to
derive both target-oriented and callsite-oriented control-flow
invariants and efficiently apply security policies at runtime.
In particular, TypeArmor relies on target-oriented invariants
to enumerate legal callsite targets and detect attacks
that transfer control to illegal targets (akin to traditional
CFI, but with much stronger binary-level invariants). In
addition, TypeArmor relies on callsite-oriented invariants
to invalidate illegal function arguments at each callsite and
contain attacks that rely on type-unsafe function argument
reuse, using a protection technique dubbed Control-Flow
Containment (CFC). CFC further improves the quality
of our target-oriented invariants, resulting in the strictest
binary-level CFI solution to date.

The COOP papers questions whether it is even possible
to mitigate sophisticated forward-edge attacks using binary-
level CFI solutions. TypeArmor contrasts these claims with
concrete evidence that constructing a strict binary-level CFI
solution to counter the most advanced code-reuse attacks
in the literature is possible and realistic in practice. To
substantiate our claims, we demonstrated that TypeArmor
stops all published COOP exploits.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable
comments. This work was supported by the European Com-
mission through project H2020 ICT-32-2014 “SHARCS”
under Grant Agreement No. 644571, the European Research
Council through the ERC Starting Grant No. 640110 (BAS-
TION), and the Netherlands Organisation for Scientific Re-
search through grants NWO 639.023.309 VICI “Dowsing”
and NWO CSI-DHS 628.001.021.

REFERENCES

[1] Apache benchmark. http://httpd.apache.org/docs/2.0/
programs/ab.html.

[2] memslap. http://docs.libmemcached.org/bin/memslap.html.

[3] OpenSSH portable regression tests. http://www.dtucker.net/
openssh/regress.

[4] pyftpdlib. https://code.google.com/p/pyftpdlib.

[5] SendEmail. http://caspian.dotconf.net/menu/Software/
SendEmail.

[6] SysBench. http://sysbench.sourceforge.net.

[7] Martı́n Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti.
Control-Flow Integrity. In CCS, 2005.

[8] Andrew R. Bernat and Barton P. Miller. Anywhere, Any-Time
Binary Instrumentation. In PASTE, 2011.

[9] Nicholas Carlini, Antonio Barresi, Mathias Payer, David
Wagner, and Thomas R. Gross. Control-Flow Bending: On
the Effectiveness of Control-Flow Integrity. In USENIX SEC,
2015.

[10] Nicholas Carlini and David Wagner. ROP is Still Dangerous:
Breaking Modern Defenses. In USENIX SEC, 2014.

[11] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko,
A. R. Sadeghi, Hovav Shacham, and Marcel Winandy.
Return-oriented Programming without Returns. In CCS, 2010.

[12] Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz,
Per Larsen, Marco Negro, Christopher Liebchen, Mohaned
Qunaibit, and Ahmad-Reza Sadeghi. Losing Control: On the
Effectiveness of Control-Flow Integrity Under Stack Attacks.
In CCS, 2015.

[13] Stephen Crane, Stijn Volckaert, Felix Schuster, Christopher
Liebchen, Per Larsen, Lucas Davi, Ahmad-Reza Sadeghi,
Thorsten Holz, Bjorn De Sutter, and Michael Franz. It’s a
TRaP: Table Randomization and Protection against Function-
Reuse Attacks. In CCS, 2015.

[14] Thurston HY Dang, Petros Maniatis, and David Wagner. The
Performance Cost of Shadow Stacks and Stack Canaries. In
ASIACCS, 2015.

[15] Lucas Davi, A. R. Sadeghi, Daniel Lehmann, and Fabian
Monrose. Stitching the Gadgets: On the Ineffectiveness
of Coarse-Grained Control-Flow Integrity Protection. In
USENIX SEC, 2014.

[16] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard
Shrobe, Martin Rinard, Hamed Okhravi, and Stelios
Sidiroglou-Douskos. Control Jujutsu: On the Weaknesses of
Fine-Grained Control Flow Integrity. In CCS, 2015.

[17] Robert Gawlik and Thorsten Holz. Towards Automated
Integrity Protection of C++ Virtual Function Tables in Binary
Programs. In ACSAC, 2014.

[18] Enes Göktaş, Elias Athanasopoulos, Herbert Bos, and Gero-
gios Portokalidis. Out Of Control: Overcoming Control-Flow
Integrity. In S&P, 2014.

[19] Enes Göktaş, Elias Athanasopoulos, Michalis Polychronakis,
Herbert Bos, and Georgios Portokalidis. Size does matter:
Why using gadget-chain length to prevent code-reuse attacks
is hard. In USENIX SEC, 2014.

[20] Istvan Haller, Enes Göktaş, Elias Athanasopoulos, Georgios
Portokalidis, and Herbert Bos. ShrinkWrap: VTable Protec-
tion without Loose Ends. In ACSAC, 2015.

[21] Dongseok Jang, Zachary Tatlock, and Sorin Lerner.
SAFEDISPATCH: Securing C++ Virtual Calls from Memory
Corruption Attacks. In NDSS, 2014.

[22] Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data
Flow Analysis: Theory and Practice. 2009.

[23] Volodymyr Kuznetsov, László Szekeres, Mathias Payer,
George Candea, R. Sekar, and Dawn Song. Code-Pointer
Integrity. In OSDI, 2014.

[24] Mathias Payer, Antonio Barresi, and Thomas R. Gross. Fine-
Grained Control-Flow Integrity through Binary Hardening. In
DIMVA, 2015.

[25] Aravind Prakash, Xunchao Hu, and Heng Yin. vfguard: Strict
protection for virtual function calls in COTS C++ binaries.
In NDSS, 2015.

[26] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lu-
cas Davi, Ahmad-Reza Sadeghi, and Thorsten Holz. Coun-
terfeit Object-oriented Programming: On the Difficulty of
Preventing Code Reuse Attacks in C++ Applications. In S&P,
2015.

[27] Felix Schuster, Thomas Tendyck, Jannik Pewny, Andreas
Maaß, Martin Steegmanns, Moritz Contag, and Thorsten
Holz. Evaluating the Effectiveness of Current Anti-ROP
Defenses. In RAID, 2014.

[28] Hovav Shacham. The Geometry of Innocent Flesh on the
Bone: Return-into-libc Without Function Calls (on the x86).
In CCS, 2007.

[29] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen
Checkoway, Úlfar Erlingsson, Luis Lozano, and Geoff Pike.
Enforcing Forward-Edge Control-Flow Integrity in GCC &
LLVM. In USENIX SEC, 2014.

[30] Victor van der Veen, Dennis Andriesse, Enes Göktaş, Ben
Gras, Lionel Sambuc, Asia Slowinska, Herbert Bos, and
Cristiano Giuffrida. Practical Context-Sensitive CFI. In CCS,
2015.

[31] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and
Susan L. Graham. Efficient Software-based Fault Isolation.
In SOSP, 1993.

[32] Chao Zhang, Chengyu Song, Kevin Zhijie Chen, Zhaofeng
Chen, and Dawn Song. VTint: Protecting Virtual Function
Tables’ Integrity. In NDSS, 2015.

[33] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo
Szekeres, Stephen McCamant, Dawn Song, and Wei Zou.
Practical Control Flow Integrity and Randomization for Bi-
nary Executables. In S&P, 2013.

[34] Mingwei Zhang and R. Sekar. Control Flow Integrity for
COTS Binaries. In USENIX SEC, 2013.

[35] Mingwei Zhang and R. Sekar. Control Flow and Code
Integrity for COTS Binaries. In Proc. ACSAC’15, 2015.

APPENDIX

In this appendix, we first formally introduce some key
concepts and then we define the invariants that are enforced
by TypeArmor.

A. Formal Definition of Invariants

Definition A.1. An indirect callsite cs is said to be of
type Tmax (max = 0, 1, 2, . . .) if it prepares at most max
function arguments (referred to as actuals).

To compute max values for each callsite, TypeArmor
performs a conservative backward static analysis (Sec-
tion IV-B).

Definition A.2. A function f has its address taken iff the
address of f is loaded into memory/registers (referred to as
an address-taken or AT function).

The set of AT functions determines the superset of targets
for unresolved (indirect) forward edges in a program’s (inter-
procedural) control-flow graph. Note that we only focus
on forward edges originating from indirect callsites, since
TypeArmor relies on Dyninst [8] to resolve all the jump
tables and corresponding indirect jumps.

Definition A.3. A function f is said to be of type Tmin

(min = 0, 1, 2, . . .) if it consumes at least min arguments
(referred to as formals).

To compute min values for each function, TypeArmor per-
forms a conservative forward static analysis (Section IV-A).

Definition A.4. For a given indirect callsite cs and function
f , we define a boolean function RET (cs, f) as follows:

RET (cs, f) =

{
0 if use ret(cs) ∧ is void(f);
1 otherwise.

where use ret(cs) is true if cs expects a return value (i.e.,
cs is calling a non-void function) and is void(f) is true
if function f does not return any value (i.e., f is a void
function).

Essentially, RET () enforces the invariant that a non-
void callsite can only call non-void functions. Note that this
definition still allows void callsites to make calls to non-void
functions.

B. Target-oriented invariants for CFI

We now enumerate the key steps TypeArmor performs to
derive target-oriented invariants and employ them for CFI-
style security enforcement:

1) TypeArmor scans program and libraries to identify the
set C of indirect callsites with unknown targets.

2) ∀cs ∈ C, TypeArmor performs backward static analysis
to determine its type Tmax. In the following, we denote
a callsite cs of a given type Tmax as csmax.

3) TypeArmor performs static analysis to identify the set
of AT functions, generating a superset F of possible
forward-edge targets for each callsite.

4) ∀f ∈ F , TypeArmor performs forward static analysis
to determine its type Tmin. In the following, we denote
a function f of a given type Tmin as fmin.

5) To derive target-oriented invariants for each callsite,
TypeArmor derives a many-to-many mapping πt : C →
2F such that πt(csmax) = {fmin: min ≤ max ∧
RET (csmax, fmin) = 1}.
Note that a many-to-many type-based mapping is nec-
essary due to inability to precisely reconstruct one-to-
one function signatures [25]. In binaries, it is perfectly
legal for an indirect callsite to target a function with
a number of formals lower than the number of actuals
prepared at the callsite.

6) TypeArmor’s runtime component instruments each cs ∈
C and f ∈ F according to the mapping πt to enforce
CFI during the execution. That is, detecting violations
whenever an edge originating from a given callsite
csmax targets a function fmin, such that fmin /∈
πt(csmax).

C. Callsite-oriented invariants for CFC

TypeArmor complements its target-oriented invariants
with stronger callsite-oriented invariants that are employed
by CFC. To derive those invariants for CFC-style security
enforcement, TypeArmor performs the following steps:

1) TypeArmor identifies the set C of indirect callsites and,
∀cs ∈ C, determines its type Tmax.

2) To derive callsite-oriented invariants for each callsite,
TypeArmor derives a one-to-one mapping πc : C → T
such that π(csmax) =Tmax.

3) TypeArmor’s runtime component instruments each cs ∈
C according to the mapping πc to enforce CFC during
the execution. That is, setting all the actuals k > max
to random values and containing illegal edges which
originate from a given callsite csmax and target a
function with more than max formals.

