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Abstract

Software is ubiquitous in our digital age and surrounds our daily life. Therefore, it is
essential to assess its correctness and search for vulnerabilities. However, as software is
getting bigger and more complex, manually analyzing it becomes harder.

In this thesis, we focus on analyzing software in an automated way to enhance its security
and make the following contributions: First, we develop new techniques to analyze software
in an automated way. To this end, we implemented tools and algorithms that allow us to
extract security-relevant information. Second, we provide techniques to use the extracted
information to enhance the security of a given software. Overall, we present four novel
automated analysis techniques that can be leveraged to enhance the security of a given
software.

First, we developed a generic way to identify pseudo-random number generator (PRNG)
and cryptographic hash function (CHF) implementations in closed-source software. To this
end, we investigated various PRNG and CHF implementations in popular cryptographic
shared libraries and created an interaction model encompassing both algorithm types.
Based on this model, we implemented a prototype able to generically find PRNG and
CHF implementations in binary executables and show its usefulness for analysts.

Next, we created a method to reconstruct C++ class hierarchies in an automated way in
binary executables. To this end, we developed multiple static analysis techniques that al-
low us to determine the relationship between different classes. Since these classes contain
function pointers that are used at various virtual callsites, we can leverage the recon-
structed class hierarchies to infer possible target functions. To demonstrate the precision
of our developed techniques, we implemented two security instrumentations capable of en-
hancing closed-source software atop of the analysis results: vtable protection and type-safe
object reuse.

In the third contribution of this thesis, we further advanced the topic of C++ binary-only
defenses against so-called vtable-hijacking attacks by developing VTable Pointer Separa-
tion (vps). In contrast to related work, this approach sidesteps the accuracy problem by
not restricting virtual callsites to a set of valid targets. Instead, vps achieves more fine-
grained protection by restricting virtual callsites to objects created at valid creation sites
(i.e., constructors). Furthermore, several inaccuracies in the source-based approach called
VTV were uncovered by the evaluation, which demonstrates the accuracy improvements
vps provides.

Finally, we present an approach to tailor shared libraries or script interpreters to a given
application. To this end, we developed a compiler extension that transforms a given shared
library or script interpreter during compile time by removing code not used by the target
application. Since not all features a shared library or a script interpreter provides are used
by an application, usually unnecessary code is loaded into memory. An attacker finding a
vulnerability in an application can leverage this unnecessary code to perform code-reuse
attacks. In contrast, shared libraries and script interpreters tailored to an application
only contain code necessary to run, therefore, effectively reducing the code an attacker
can leverage for her code-reuse attacks. The evaluation demonstrated a significant code
reduction and, further, the possibility to remove entire functionalities from an interpreter,
such as executing shell commands.
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Zusammenfassung

Software ist allgegenwärtig in unserem digitalen Zeitalter. Daher ist es unentbehrlich die
Korrektheit von Software zu prüfen und nach Schwachstellen in ihr zu suchen. Da Software
jedoch immer komplexer wird, wird es auch schwieriger, sie manuell zu analysieren.

In dieser Dissertation beschäftigen wir uns mit der automatisierten Analyse von Soft-
ware, um ihre Sicherheit zu verbessern. Zu diesem Zweck haben wir, mit Hilfe neu en-
twickelter Techniken, Programme und Algorithmen implementiert, mit denen wir sicher-
heitsrelevante Informationen auffinden können. Zudem zeigen wir auf, wie diese Informa-
tionen dazu genutzt werden können, die Sicherheit der Software zu verbessern. Insgesamt
unterteilt sich diese Dissertation in vier Themenbereiche.

Im ersten Themenkomplex entwickeln wir eine generische Methode um Implementierun-
gen von Pseudozufallszahlengeneratoren (PRNG) und kryptografische Hash-Funktionen
(CHF) in proprietärer, geschlossener Software zu finden. Zu diesem Zweck untersuchten
wir eine Vielzahl von verschiedenen PRNG- und CHF-Implementierungen in beliebten
kryptografischen Programmbibliotheken und erstellten mit ihrer Hilfe ein Interaktions-
modell. Basierend auf diesem Modell haben wir einen Prototypen zum Auffinden von
PRNG- und CHF-Implementierungen in geschlossener Software implementiert und an-
hand einer ausführlichen Evaluation seine Nützlichkeit für einen Analysten aufgezeigt.

Als Nächstes haben wir eine Methode zur automatisierten Rekonstruktion von C++-
Klassenhierarchien in Binärprogrammen erstellt. Dazu haben wir statische Analysetech-
niken entwickelt, mit denen wir die Beziehungen zwischen Klassen bestimmen können.
Da diese Klassen Funktionszeiger enthalten, können wir die rekonstruierten Hierarchien
dazu nutzen, Zielfunktionen von indirekten Aufrufen abzuleiten. Um die Präzision unserer
entwickelten Techniken zu demonstrieren, haben wir zwei Sicherheitsinstrumentierungen
für Binärprogramme entwickelt, die auf die Analyseergbenisse aufbauen.

Im dritten Themenbereich haben wir C++-Verteidigungsmaßnahmen auf Binärebene
gegen sogenannte Vtable-Hijacking-Angriffe durch die Entwicklung von VTable Pointer
Separation (vps) verbessert. Im Gegensatz zu verwandten Arbeiten umgeht vps Unge-
nauigkeiten, indem es indirekte Aufrufe auf valide erstellte Objekte beschränkt, anstatt
zu versuchen, die Ziele auf eine vorher bestimmte Menge gültiger Ziele zu begrenzen.
Die ausgiebige Evaluierung zeigte die Präzisionsgewinnung durch vps, auch weil mehrere
Ungenauigkeiten in einem Quellcode basierten Verfahren namens VTV gefunden wurden.

Im letzten Teil dieser Arbeit stellen wir einen Ansatz vor, um Programmbiblio-
theken und Skriptinterpreter auf ein Zielprogramm zuzuschneiden. Dazu haben wir
eine Compilererweiterung entwickelt, die von dem Zielprogramm nicht verwendeten
Binärcode aus Programmbibliotheken und Skriptinterpretern entfernen kann. Dieser
nicht verwendete Binärcode wird normalerweise zur Laufzeit des Programmes in den
Arbeitsspeicher geladen. Ein Angreifer, der eine Sicherheitslücke ausnutzt, kann diesen
nicht verwendeten Binärcode für sogenannte Code-Reuse-Angriffe benutzen. Wenn die
Programmbibliotheken und Skriptinterpreter allerdings auf das Zielprogramm zugeschnit-
ten sind, enthalten diese keinen ungenutzten Binärcode, was den Angreifer einschränkt.
Die Auswertung zeigte eine signifikante Programmcode-Reduktion und darüber hinaus
die Möglichkeit, ganze Funktionalitäten wie das Ausführen von Shell-Befehlen aus
Skriptinterpretern zu entfernen.
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Chapter 1
Introduction

1.1 Motivation

The increasing usage of information technology has lead to a development in which almost
every new device has a way to connect with other devices. Managing these connections
and providing a convenient way for a user to interact with these devices is done by soft-
ware. Today, software is ubiquitous. Since software surrounds our daily life, it is essential
to assess its correctness and its security. Analyzing software can have multiple reasons, for
example, not trusting the vendor, scrutinizing the distribution channel, or verifying the
work of the developers. An analyst always prefers analyzing the source code of a program
rather than the compiled binary, since the source code provides a wealth of additional
information missing in the binary format, such as data-type information. However, pro-
prietary, closed-source software is only available as binary executable. Having no source
code for a software available raises additional security concerns. First, if a vendor no
longer supports a software or does not fix a known vulnerability, protecting this appli-
cation becomes way more difficult since modifying high-level source code is not possible.
Second, the assessment becomes more difficult since during the compilation information is
removed from the code. Implementation issues leading to vulnerabilities, such as wrongly
used algorithms, or design flaws, such as using a self-designed cryptographic algorithm,
would be easier to detect if source code were available, especially in complex software sys-
tems. Consider for example an analyst who wants to check whether the implementation or
usage of a cryptographic function is correct (e.g., a pseudo-random number generator or
cryptographic hash function). The analyst has to locate this function in the binary before
the actual security assessment can begin. Therefore, identifying the function targeted by
the assessment places an additional hurdle on the overall analysis process. Considering
that over time software gets more complex and the binaries getting larger, we expect that
this process is getting more involved [11, 30, 95, 97, 107]. It is thus necessary to automate
this initial step of identifying functions of interest, as it would benefit the overall analysis
process and, as a result, strengthen the security of our computer systems. Such being
the case, two questions follow naturally: What kind of new approaches can be developed
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Chapter 1 Introduction

to support this initial analysis step, and how can these approaches be used to improve the
security of the software?

One way to handle software complexity during the development process on the codebase
level is the choice of the programming language. The features of a programming language
are an essential factor in handling complexity for a developer. Large software projects often
rely on the system programming language C++ (e.g., Chrome Browser). C++ lets the
developer follow the object-oriented programming model which allows them to group code
and data together as classes. Developers can easily reuse code through class inheritance
and are not forced to duplicate it. The concept of polymorphism gives them the additional
flexibility to provide a single interface for objects of different types. However, compiling
C++ code that uses polymorphism creates constructs on the binary level that complicate
binary analysis. As a result, analyzing the binary to assess the security of it gets more
involved, and new techniques are required that can precisely analyze these constructs.

To make things worse, an attacker finding a vulnerability in a C++ program can poten-
tially hijack the low-level constructs. Polymorphism on the binary level is implemented
through virtual function tables (vtables) which contain function pointers. In practice, hi-
jacking these vtables is a common exploitation technique widely used in exploits that target
complex programs written in C++ such as web browsers and server applications [148]. To
this end, the adversary injects a malicious vtable and diverts the control flow through the
usage of a function pointer in this table. Since modern operating systems make executable
memory locations not writable at the same time, a technique called W ⊕X [50] or data
execution prevention (DEP) [108], attackers resort to re-use existing code in the program
as their shellcode. Reusing existing code for exploitation, called a code-reuse attack, comes
in a variety of different forms (e.g., ret2libc [152] or return-oriented programming [136]
(ROP)). To mitigate such attacks different forms of defenses have been developed and
are deployed, such as address space layout randomization (ASLR) [122] and control-flow
integrity (CFI) [149]. They have in common that they are integrated into the compiler or
depend on specific compiler options and thus need source code access to work (e.g., ASLR
requires programs to be compiled as position-independent code, and CFI inserts checks at
indirect branches). However, vendors of proprietary software can have different reasons
for not deploying such mitigations into their product, such as not supporting the software
anymore or simply not having the resources to do it. As a result, proprietary software not
deploying those mitigations poses a great risk to its users. One way to reduce this risk is
to deploy mitigations by instrumenting or rewriting the proprietary application with se-
curity mechanisms. However, adding security measures into binaries is a difficult problem
as the application has to be precisely analyzed. An inaccurate binary analysis may lead
to breaking the program. Generally, there are two ways retrofitted security measures can
enhance a program without breaking it: First, the developed binary analysis techniques
are precise enough to guarantee that the target application does not break. Second, the
instrumentation used for the target application can detect possible errors of the analysis
and thus act accordingly. Either way, retrofitted security techniques do not only have to
take their protection guarantees into account, but also have to cope with the problems
binary analysis entails. And since C++ code using polymorphism complicates the binary
program structure, new approaches that can handle the C++ low-level constructs are
necessary.
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1.2 Outline and Contributions

Other than using the features provided by the programming language to tackle software
complexity on the codebase level, developers also resort to reuse existing code on the
eco-system level. A common way to reuse code in an eco-system is through the use of
shared libraries. These give the developers the possibility to focus solely on the user-
facing application rather than reimplementing common functionalities such as memory
management or string processing functions over and over again. However, since not all
code of an integrated shared library is used in a developed program, the downside of this
concept is that unnecessary code is loaded into memory. Since attackers reuse existing code
for their exploitations, shared libraries offer them a plethora of (mostly) unused code and
thus a variety of functions or code parts to choose from. A study across 2,016 applications
of the Ubuntu Desktop environment finds that only 5% of the libc, the standard library
for the C programming language, is used by an application [129]. One way to remove the
unused code of a shared library is to statically link it against the target application. Static
linking resolves the external functionalities and plainly copies them into the application.
This allows the linker to remove the unnecessary code and thus reduce the availability of
code snippets an attacker can choose from for a code-reuse attack. As a result, no shared
library is needed to execute the application since all library-provided functionalities are
part of the program itself and hence available in memory. However, this increases the
complexity in managing software updates: since each application has to be statically
linked with all used libraries, each has to be updated if a vulnerability is found in the
code of the included libraries. Therefore, a user has to decide between unused code an
attacker can leverage for a code-reuse attack and manageability of software updates at the
moment. That is why new methods of combining manageability and code reduction are
required.

A similar problem with unused code holds for applications written in interpreted lan-
guages, such as PHP, Python, or Ruby: The interpreter is a complex piece of software and
offers more functionality than the application actually requires [128]. Hence, an attacker
that is able to inject her own script code into the application can leverage these unused
methods to execute her exploit. Some interpreters, such as PHP, offer a configuration
option to disable certain functionalities. This is especially interesting in environments in
which untrusted scripts are executed (such as Google App Engine [71]). However, since
the code that provides these functionalities is still available in the script interpreter, an
attacker might be able to bypass the restrictions and escape the interpreter’s internal
sandbox [109, 118]. In contrast to native code applications, the compiler or linker is not
able to remove unused functionalities from the script interpreter. Hence, new approaches
and techniques are required to remove unused code from the interpreter.

1.2 Outline and Contributions

In this thesis, we explore how automated program analysis can contribute to securing soft-
ware. To this end, we developed new analysis techniques to identify security-relevant in-
formation, such as cryptographic algorithms or specific low-level code constructs. Mainly,
the contributions are twofold: First, excavating security-relevant information from a given
program in an automated way. Second, using this information to enhance the program’s
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security (e.g., with additional, more fine-grained security checks). In the following, we
give an outline of this thesis and list the contribution of each chapter.

Chapter 2: Technical Background This chapter provides the technical background
needed to understand the rest of this thesis. First, it gives an overview of the field of
program analysis, with a focus on the analysis of binary executables. This overview intro-
duces techniques and abstractions used for both static and dynamic analysis. Secondly,
this chapter provides a brief introduction to the programming language C++ and the
concept of polymorphism. The focus lies on how the compiler implements the concept of
polymorphism on the binary level. As program analysis and C++ internals are a very
broad field, the given overviews only cover methods relevant to understanding this thesis
and are far from complete.

Chapter 3: Automated Identification of Cryptographic Functions in Binaries We
present the design of an analysis approach to precisely identify pseudo-random number
generator (PRNG) and cryptographic hash function (CHF) implementations in a given
program. Since PRNGs and CHFs represent crucial components of today’s security ecosys-
tem, a flaw in their implementation or usage can have dire consequences for the security
of a given system, such as enabling an adversary to decrypt encrypted messages or forge
signatures. Therefore, assessing the correct implementation and usage of such algorithms
is essential to ensure their proper operation. If source code is available, finding these algo-
rithms in a given application or library is straightforward due to the wealth of information
the code provides. However, during the compilation process most of this information is
lost and proprietary, closed-source programs are only available as binary code. Hence,
identifying the algorithms in a closed-source program is a crucial step an analyst has to
solve before the actual security assessment of the algorithm can start. To simplify the
work for an analyst, our novel approach identifies PRNG and CHF implementations in
binary executables in an automated way. Instead of relying on signatures of existing imple-
mentations or magic constants, our approach works in a generic manner. To this end, we
investigated PRNG and CHF implementations in popular cryptographic shared libraries.
We found similarities and based on these insights, we built a generic model encompassing
the interactions of both types of algorithms with other components of the application and
the memory. The model allows us to abstract away the reliance on concrete implemen-
tation details. Therefore, we regard the corresponding implementation of the PRNG and
CHF as blackbox and only consider their interactions with the rest of the program. Our
approach is built on the observation that PRNGs and CHFs create data with a certain
level of randomness. To identify this property, we run the function suspected to correspond
to a PRNG or CHF multiple times to see if the generated data looks random. We imple-
mented a prototype called TropyHunter based on our proposed approach and evaluated
it on a diverse set of open and closed-source programs. Although TropyHunter’s purpose
is to analyze closed-source programs, the evaluation on open-source software allows us to
generate a ground truth we can compare against. The results show that our approach is
beneficial to an analyst and generically finds PRNG and CHF implementations in binary
executables.
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Chapter 4: Uncovering Class Hierarchies in C++ Binaries With the help of
TropyHunter an analyst is able to generically identify PRNG and CHF implementations
in a binary executable. However, its evaluation has shown that the presence of function
pointers in a program poses a problem to the analysis process. This is especially the
case for programs developed in C++, as high-level concepts used in object-oriented
programming paradigms are often translated into binary code using function pointers.
Such code is harder to grasp than, e.g., traditional procedural code, since features such
as polymorphism or inheritance generally add complexity through, e.g., dynamically
computed branches or interface code supporting objects of different types. Hence, a deep
understanding of interactions between instantiated objects, their corresponding classes,
and the connection between classes would vastly reduce the time it takes an analyst to
understand the application, and offer the possibility to improve automated analysis tools.
To improve the binary analysis on C++ programs, we developed a novel automated
analysis approach to reconstruct class hierarchies. To this end, we identify C++ code
constructs used for polymorphism, called virtual function tables (short vtables). From
the usage of these vtables in the code we can then deduce the connection between the
classes. Further, we can use this information to resolve the targets of virtual callsites
and thus can predict possible values of the corresponding function pointers. The analysis
does not rely on optionally embedded metadata information (which is usually removed
during the compilation process), does not rely on particular compiler flags, and works
on commercial-of-the-shelf (COTS) software. We implemented an analysis framework
called Marx and added this novel technique to it. Despite its obvious usage to aid the
manual analysis process of a C++ program, we further show that the derived information
can be reliably used to enhance the security of closed-source applications. To showcase
this property, we developed two binary-level defenses using Marx ’s analysis results.
The first application is a vtable protection system to prevent virtual calls to methods
that do not belong to the class hierarchy and mitigate vtable-hijacking attacks. The
second application is a custom heap allocator to support type-safe object reuse by placing
newly allocated objects in memory pools based on their type. The results show that the
extracted information is not only valuable for an analyst, but also is precise enough to
enhance the security of binary executables.

Chapter 5: Excavating C++ Constructs from Binaries to Protect Dynamic Dispatch-
ing With the help of Marx , we can build a vtable protection system and a custom heap
allocator to support type-safe object reuse. Although the analysis reconstructs the class
hierarchies accurately, the remaining imprecision of the analysis results still leaves wiggle
room for an attacker. To further improve binary-level defenses against vtable hijacking
in C++ applications, we developed VTable Pointer Separation (vps). In contrast to the
vtable protection system build with Marx ’s analysis results, as well as other previous
binary-level defenses, our novel approach does not match classes to virtual callsites. In-
stead, vps achieves a more accurate protection by restricting virtual callsites to validly
created objects. More specifically, vps ensures that virtual callsites can only use objects
created at valid object construction sites (i.e., constructors), and only if those objects can
reach the callsite. Moreover, vps explicitly prevents false positives (falsely identified vir-
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tual callsites) from breaking the binary, an issue existing work does not handle correctly,
if at all. Furthermore, just like the type-safe object reuse defense built with the help of
Marx , vps also protects against dangling pointers without any modification. The results
show that this binary-level defense has a similar accuracy as protection mechanisms re-
lying on source-code access. Further, the evaluation uncovered several inaccuracies in a
widely-deployed source-based approach called VTV that is considered a state-of-the-art
C++ defense.

Chapter 6: Towards Automated Application-Specific Software Stacks While the pre-
vious approaches focusing on C++ code try to prevent the exploitation of a vulnerability
directly, in our next method, we try to reduce the amount of code an attacker can reuse
for her shellcode. Since software complexity has increased over the years, one common
way to tackle this complexity during development is to encapsulate features into shared
libraries. This allows developers to reuse already implemented features instead of reimple-
menting them over and over again. However, not all features provided by a shared library
are actually used by an application. As a result, an application using shared libraries
loads unused code into memory, which an attacker can use to perform code-reuse and
similar types of attacks. The same holds for applications written in a scripting language
such as PHP or Ruby: The interpreter typically offers much more functionality than is
actually required by the application and hence provides a larger overall attack surface.
We tackle this problem and propose a first step towards automated application-specific
software stacks. We present a compiler extension capable of removing unneeded code from
shared libraries and—with the help of domain knowledge—also capable of removing un-
used functionalities from an interpreter’s code base during the compilation process. We
evaluated our approach on a diverse set of applications and showed the effectiveness of the
code reduction in shared libraries. Further, the results demonstrate that this approach
can reduce the number of sensitive functions in an interpreter up to the point where a
complete functionality, such as shell command execution, is completely removed.

1.3 Publications

The work presented in this thesis is based on several publications at academic conferences
as well as yet unpublished material. An overview of the publications related to the content
of this thesis is given in the following. Additionally, other publications are listed that
emerged during the Ph.D. studies but were not used in this thesis.

Chapter 3 is based on yet unpublished material. The work was conducted together with
Philipp Görtz, Paul Gerste, Ali Abbasi, and Thorsten Holz.

In Chapter 4, we present a publication presented at the Network and Distributed Sys-
tem Security Symposium (NDSS) 2017 [120]. This work was conducted together with
Moritz Contag, Victor van der Veen, Chris Ouwehand, Thorsten Holz, Herbert Bos, Elias
Athanasopoulos, and Cristiano Giuffrida. The promising results lay the foundation of the
follow-up research published at the Annual Computer Security Applications Conference
(ACSAC) 2019 [121] which is presented in Chapter 5. This work was performed together
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1.3 Publications

with Victor van der Veen, Dennis Andriesse, Erik van der Kouwe, Thorsten Holz, Cristiano
Giuffrida, and Herbert Bos.

Chapter 6 was published at the European Symposium on Research in Computer Security
(ESORICS) 2019 [48] and is based on the master’s thesis of Nicolai Davidsson. The
research was conducted together with Nicolai Davidsson and Thorsten Holz. Chapter 6
also contains information that is included in our technical report [49].

My studies resulted in several other publications that are not part of this thesis. To-
gether with Moritz Contag, Robert Gawlik, and Thorsten Holz, we published a new defense
for function table randomization at the Conference on Detection of Intrusions and Malware
& Vulnerability Assessment (DIMVA) 2018 [37]. In cooperation with Moritz Contag, Guo
Li, Felix Domke, Kirill Levchenko, Thorsten Holz, and Stefan Savage, a study on emission
defeat devices in automobiles was presented at the IEEE Symposium on Security and Pri-
vacy (S&P) 2017 [38]. Together with Victor van der Veen, Enes Goktas, Moritz Contag,
Xi Chen, Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias Athanasopoulos, and Cristiano
Giuffrida, we published a control-flow hijacking defense on the binary level at the IEEE
Symposium on Security and Privacy (S&P) 2016 [158]. An information-leak detection sys-
tem for scripting engines was published at the Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA) 2016 [64] together with Robert Gawlik,
Philipp Koppe, Benjamin Kollenda, Behrad Garmany, and Thorsten Holz. In cooperation
with Moritz Contag and Thorsten Holz, we published a probabilistic obfuscation approach
at the Conference on Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA) 2016 [119]. A security assessment of the Eduroam network was published at
the ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSec)
2015 [23] together with Sebastian Brenza and Christina Pöpper.

A comprehensive list of publications that the author has contributed to during the
course of the work on the dissertation is given on page 131.
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Chapter 2
Technical Background

Before we describe in detail the analysis techniques developed and evaluated throughout
this thesis, we introduce the technical knowledge needed to understand the following chap-
ters. We start by giving a brief introduction to program analysis. More specifically, we
focus on the specialized field of binary analysis, which is used in Chapter 3, Chapter 4, and
Chapter 5. We follow the common division into static and dynamic analysis approaches
to further categorize them. Although this thesis uses mostly static analysis, an additional
overview of dynamic analysis gives valuable insights into existing techniques and a more
comprehensive understanding of the advantages and disadvantages of both categories.

Next follows a brief introduction into the system programming language C++ and
the concept of polymorphism. How polymorphism translates from a high-level construct
into the binary level is explained in detail. This technical background is necessary to
understand the analysis techniques presented in Chapter 4 and Chapter 5.

2.1 Program Analysis

Program analysis describes the process of analyzing the behavior of computer programs.
It is used amongst others for checking the correctness of the application, optimizing code,
or finding security vulnerabilities. For example, compilers such as LLVM or GCC use
program analysis techniques to optimize the given code during the compilation process.
There are mainly two strategies to perform program analysis: static program analysis
and dynamic program analysis. Static program analysis reasons about the application
without executing it, whereas dynamic program analysis is performed during runtime of
the application. Moreover, an analysis using a combination of both strategies is also
possible. However, the distinction between static and dynamic program analysis is not
always clear.

Program analysis targets mainly the control or data flow of a program. In control-
flow analysis, the reachability of code locations is determined to, for example, search for
vulnerabilities. More specifically, it is examined which parts of the program can be reached
from a specific code location or from where the control flow reaching a code location might
originate. When analyzing the data flow, the dependencies and relationships of different
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TrueFalse

f0 = 0

f1 = 1

i = 0

if i < param1

temp = f0

f0 = f1

f1 = f0 + temp

i = i +1

return f1

Figure 2.1: Example of a control-flow graph. Each node represents a basic block that
contains a code sequence which only has one entry and one exit. The edges
between the nodes depict the possible control flow.

1   x = a + b 

2   a = x - b 

3   y = a + x 

4   x = y + a 

5   a = b * 2

1   x_0 = a_0 + b_0 

2   a_1 = x_0 - b_0 

3   y_0 = a_1 + x_0 

4   x_1 = y_0 + a_1 

5   a_2 = b_0 * 2

a) b)

Normal SSA

Figure 2.2: Difference between code in a normal representation in a) and the SSA form in
b). In the case of the variable a, only one distinct variable name exists in the
normal representation. Whereas in the SSA form, the variable a is split into
a 0, a 1 and a 2.

data structures are examined. A common abstraction used for control-flow analysis is the
Control-Flow Graph (CFG) and for data-flow analysis, the Static Single Assignment form
(SSA).

A CFG represents the control flow of an application in a directed-graph representation.
Each node of this graph is called a basic block. A basic block is a code sequence executed
consecutively with only one entry and one exit (i.e., no branching code instruction in
between). The edges between the nodes in the CFG depict the control flow between the
basic blocks [7]. For example, an edge can represent a branch of an if-statement at the
end of a basic block. Figure 2.1 depicts an example of a CFG. This representation is often
internally used by compilers (e.g., LLVM or GCC) to reason about the code and perform
optimizations on it.

SSA is a code representation in which each variable is assigned exactly once, and each
variable is assigned before it is used [45]. This is mostly done by creating new versions of a
variable each time it gets assigned a new value. In the example shown in Figure 2.2, each
variable name has a numerical number as a version. As soon as the variable gets a new
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value assigned, the numerical version gets incremented. This way, the locations assigning
variables in the code can be easily identified, and the data flow of variables can be tracked.

Various additional representation forms exist in program analysis, such as the data-
flow graph, which is a directed graph representing the data flow of each variable in the
application, or the call graph, a directed graph representing the control flow between
functions in the application. However, describing all of them is out of scope for this thesis,
and we refer to the corresponding literature for a more exhaustive list [5, 113,140].

Binary Analysis Program analysis performed on the compiled binary of the application
is called binary analysis (also called reverse code engineering or simply reverse engineer-
ing) [54]. This form of program analysis is mostly performed if the source code of an
application is not available. Typical goals for binary analysis is finding vulnerabilities in
closed-source software or understanding the inner workings of an application (e.g., ana-
lyzing malware to understand what it does).

During the compilation process, information available in the source code, such as data-
type information or function names, is removed. Although it is possible to preserve a
large part of the information during compilation, it is only used for debugging purposes.
Hence, this wealth of information is usually not available in released application binaries.
Therefore, in addition to the problems that program analysis has on source code (e.g., the
halting problem [153]), binary analysis also suffers from a lack of information. Furthermore,
even if the source code of the analyzed application is available, the compiler transforms
the code during compilation to optimize it. As a result, the source-code structure does
not have to match the binary-code structure.

The same abstract representations used for program analysis on source code can also
be used for binary analysis. For example, in the case of a CFG, the basic blocks contain
assembler instructions instead of source-code instructions. In the case of the SSA form, the
variables are represented through CPU registers instead of actual source-code variables.
However, creating some of the representations is more involved on the binary level than on
source code. For example, creating a complete CFG for a function is not always feasible
since unequivocally identifying the code of a function is not always possible [10]. Hence,
an analyst or analysis tool may have to work with an imprecise representation.

Static Binary Analysis The static binary analysis is performed without executing the
application. This gives an analyst the possibility to reason about the application as a
whole. However, in contrast to dynamic analysis, no concrete values (memory or register
values) are available for the analysis since the application is not executed.

One method to tackle this shortcoming is Symbolic Execution (SE) [88]. This technique
emulates the target application by using symbolic values as input. More specifically, the
emulator replaces each input by a symbol representing it instead of using concrete input
values. As a result, instead of actual values, an expression is created for each register and
memory value. For example, at a branching instruction, the symbolic execution creates an
expression representing the condition containing the constraints that have to be satisfied
to follow the branch. Popular tools providing symbolic execution for analysis purposes are
Klee [27] and S2E [33].
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Dynamic Binary Analysis The dynamic binary analysis is performed during the runtime
of the application. Therefore, it can rely on concrete values that are processed during the
execution (e.g., inspect register values or memory locations). A typical usage of dynamic
analysis is debugging, such as attaching a debugger to an application running, stopping
the execution on specific instructions, and inspecting the contents of registers and memory.

Executing an application is not always possible, e.g., if the host system has a different
CPU architecture than the target application requires. Nor is executing an application
always desirable, e.g., if an executed malware could access the data on the host system.
To this end, the target application can be emulated in a virtual environment. During
emulation, the code of the application is run by an emulator. Because of the virtual
environment, the emulated code does not interact with the host system. As a result,
changes to files or the system are not forwarded to the host’s environment.

One major drawback of dynamic analysis is that only executed code can be inspected.
As a result, dynamic analysis suffers from code coverage problems. Take, for example, an
application with multiple error-handling routines. If no error occurs during the execution
of the application, the error-handling routine is not executed. Hence, an analyst searching
for bugs might miss one in such a routine. One popular way to automate searching for
bugs and increasing code coverage is fuzzing. In fuzzing, the target application is executed
with different inputs while monitoring it for unexpected behavior (e.g., crashes). The
input generation is done by the fuzzer and can be created following different strategies
(e.g., by mutating an already existing input) [14,163]. As with the most prominent fuzzer
AFL [163], fuzzing is often performed on the source-code level. However, fuzzer targeting
binary applications to search for vulnerabilities also exist [14,130].

2.2 C++

This section provides background on C++ internals needed to understand how Chapter 4
and Chapter 5 handle C++ binaries. We focus on how high-level C++ constructs translate
to the binary level. For a more detailed overview of high-level C++ concepts, we refer to
the corresponding literature [144].

2.2.1 Object-oriented Programming

C++ is an object-oriented programming (OOP) language which compiles to native code.
In OOP, classes are data types used to instantiate concrete objects. On the latter, one
can call functions (also called member functions or methods) as defined by the class an
object was instantiated from. Apart from functions, classes can also define attributes and
hence couple code (via functions) and data (via attributes) together.

OOP allows classes to inherit functions and attributes from other classes. This defines a
relation. The class providing functions and attributes to another class is commonly called
the base class in that relation, whereas the class inheriting these is called the derived class.
This concept leads to what is called a class hierarchy : Every class is related to either zero
or multiple bases as well as zero or multiple derived classes. Class hierarchies can be
depicted as a directed graph in which the inheritance relation is given by the direction
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0x08: varA
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Object C
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High-Level Binary Level

Offset-to-Top
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Function-Entry1
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Offset-to-Top

RTTI

Function-Entry1

Function-Entry2

Offset-to-Top

RTTI

Function-Entry1

Function-Entry2

Figure 2.3: Example C++ class hierarchy layout shown at a high-level in a) and b) shows
its layout in native code. Class C inherits attributes and functions of both class
A and B. Further, class C overrides funcA2 and funcB1 and provides its own
implementation, C::funcA2 and C::funcB1.
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(base or derived class). If a class inherits from multiple base classes, this is referred to as
multiple inheritance; otherwise, it is called single inheritance.

Classes may add several modifiers to their functions. One of the most important
throughout this thesis is the virtual modifier. If this modifier is used on a function,
a derived class is free to override said function and provide its own implementation. This
concept is called polymorphism, where a single function invocation may behave differently,
depending on the context in which it is called. More concretely, the programmer can call
a virtual function on either an object of the base or any derived classes. Depending on the
type of the object, the appropriate implementation of the function is called. This, in turn,
allows programmers to work on the most general class and vastly simplify their code. In
cases where the compiler cannot determine statically on which object the function is to
be invoked, the selection of the appropriate implementation is made at runtime. Further-
more, abstract base classes represent an edge case: They provide several virtual functions,
but no implementation on their own (pure virtual functions). This forces the deriving
class to implement functions conforming to the declaration the base class provides.

Figure 2.3 a) depicts an exemplary relation of three classes A, B, and C. Class C inherits
the functions from classes A and B, i.e., one may call the functions funcA1, funcA2, funcB1,
funcB2 on an object of class C, in addition to the functions class C provides itself. The same
is true for the attributes; hence, class C allocates space for attributes varA, varB, and varC.
Further, C overrides funcA2 and funcB1, i.e., it specifies a more fitting implementation
for its class.

To create an object of a specific class, the operator new can be used, amongst others. It
allocates space for the object (whose size is mostly determined by its attributes) and calls
a designated initialization function that initializes the object’s attributes with meaningful
values. This function is called a constructor. Similarly, a destructor releases further
resources the constructor requested previously, and is usually invoked through the operator
delete.

In the following, we explain how the aforementioned concepts are implemented on the
binary level.

2.2.2 Virtual Function Tables

On the binary level, polymorphism is implemented with the help of what is called a virtual
function table (vtable for short). It contains the addresses of all virtual functions a class
provides. Each class containing at least one virtual function has a vtable. Each object
of such a class contains a pointer to the corresponding vtable, which is typically stored
in read-only memory. Since each class has its own corresponding vtable, it can also be
considered as the type of the object. In the following, we refer to the pointer to the vtable
as vtblptr , while the pointer to the object is called thisptr .

The Itanium C++ ABI [60] defines the vtable layout for Linux systems1. Figure 2.3 b)
depicts this layout on the binary level. The vtblptr points to the first function entry in
the vtable, and the vtable contains an entry for each virtual function (either inherited or
newly declared) in the class. For example, in Figure 2.3 b), class B ’s vtable contains two

1Linux uses the Itanium C++ ABI for x86-64 (amd64).
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function entries because the class implements virtual functions funcB1 and funcB2. Class
C inherits from two classes, A and B, and therefore has two vtables (a base vtable and
one sub-vtable). The base vtable contains all virtual functions inherited from class A and
implemented by class C. The sub-vtable is a copy of class B ’s vtable with a special entry
that refers to the overwritten virtual function (called a thunk). Preceding the function
entries, a vtable has two metadata fields: Runtime Type Identification (RTTI) and Offset-
to-Top.

RTTI holds a pointer to type information about the class. Among other things, this
type information contains the name of the class and its base classes. However, RTTI
is optional and often omitted by the compiler. It is only needed when the programmer
uses, e.g., dynamic cast or type info. Hence, a reliable static analysis cannot rely on this
information. Classes that do not contain RTTI have the RTTI field set to zero.

Offset-to-Top is needed when a class uses multiple inheritance (hence has a base vtable
and one or more sub-vtables) as class C does. Offset-to-Top specifies the distance between
a sub-vtable’s own vtblptr and the base vtblptr at the beginning of the object. In our
example, the vtblptr to class C ’s sub-vtable resides at offset 0x10 in the object, while the
vtblptr to the base vtable resides at offset 0x0. Hence, the distance between the two, as
stored in the Offset-to-Top field in sub-vtable C, is -0x10. Offset-to-Top is 0 if the vtable
is the base vtable of the class or no multiple inheritance is used.

In cases of virtual inheritance, an advanced C++ feature for classes that inherit from the
same base multiple times (diamond-shaped inheritance), vtables can contain one additional
metadata field, called Virtual-Base-Offset. However, virtual inheritance is rarely used in
practice.

2.2.3 C++ Object Initialization and Destruction

Constructors are used for initializing the memory area previously allocated to hold a
specific object. Since our analysis approaches focus on objects containing virtual functions,
we only consider object initialization and destruction of classes having a vtable.

During object instantiation, the vtblptr is written into the object by the constructor.
Part b) of Figure 2.3 depicts an object’s memory layout at the binary level. The vtblptr is
at offset 0x0, the start of the object. For classes with multiple inheritance, the constructor
also initializes vtblptrs to the sub-vtable(s). In addition, the programmer may initialize
class-specific fields in the constructor. These fields are located after the vtblptr and, in
case of multiple inheritance, after any sub-vtblptrs.

For classes that have one or more base classes, the constructors of the base classes are
called before the derived class’s own initialization code (top-down). As a result, the base
class places its vtblptr into the object, which is subsequently overwritten by the derived
class’s vtblptr . Depending on the optimization level, constructors are often inlined, which
may complicate binary analysis that aims to detect constructors.

An analogous principle is applied for object destruction through destructor functions.
However, the destructors are executed in reversed order (bottom-up, destructor of the base
class is executed last).

Abstract classes form a special case: although programmers cannot instantiate abstract
classes, and despite the fact that their vtables contain pure virtual function entries, the
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compiler can still emit code that writes the vtblptr to an abstract class into an object.
However, this happens only when creating or releasing an object of a derived class, and
the abstract vtblptr is immediately overwritten.

2.2.4 Virtual Function Dispatch

As opposed to regular functions (which are implemented using direct calls), virtual func-
tion calls require a specific type of callsite (virtual callsite, or vcall). They handle the
selection of the proper virtual function depending on the object on which the function is
invoked using the object’s vtable.

Consider a virtual callsite invoking funcA2 on an object of either class A or C. Indepen-
dent of the class the object at the callsite is instantiated from, in this case, one merely
has to call whatever function is referenced at offset 0x08 in the object’s vtable. As seen
in Figure 2.3 b), this offset either points to A::funcA2 or C::funcA2 and always calls the
correct implementation for the given object. Note that this offset has to be the same across
all related vtables. In this case, this constraint applies for vtable A and C, as classes A

and C are the only candidates when invoking function funcA2. This mechanism effectively
implements polymorphism at the binary level.

The compiler emits code that directly implements this mechanism. At each vcall, the
thisptr to the object is also set as an implicit argument (meaning the argument is not
specifically set in the source code). Depending on the calling convention, the thisptr is
either stored in a specific register or on the stack. In the Itanium C++ ABI on x86-64, a
vcall always has the following structure:

mov RDI, thisptr

call [vtblptr + offset]

The thisptr is stored in the RDI register as the first argument and the vtblptr is used
to select the correct virtual table. The value offset denotes the offset into the selected
vtable in order to branch to the correct function. Note that it may be zero or omitted if
the first function of the vtable is targeted.

The same code structure holds for cases that use multiple inheritance. Given that the
dispatching mechanism targets certain offsets in the vtable, the order of the functions
must be preserved throughout the hierarchy. In the given example, class C has a copy
of the vtable of class A with a modified entry (pointer to function C::funcA2 instead of
A::funcA2) and appends pointers to its own implementations of virtual functions to it.
Further, a modified copy of the vtable of class B is added as a sub-vtable of class C. In this
sub-vtable, only the function entries of overridden virtual functions have changed. These
entries have been replaced by a pointer to special functions called thunks. Note that if a
class derives from only one base class, both vtables can be merged without conflicts and
no sub-vtable is necessary – the current class simply uses higher offsets when accessing its
part of the vtable.

When accessing an object of class C as an instance of class B, the layout has to match
the one expected by vcalls of class B. Hence, the thisptr has to be increased by 0x10 to
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point to the position the vtblptr to the sub-vtable is stored (offset 0x10). Thunks are used
to call back into virtual functions belonging to class C. In the given example, funcB1 was
overwritten by class C. At the position of the entry of funcB1 in the sub-vtable, the pointer
to the thunk, thunk to C::funcB1, has been written. When executing this thunk, the
thisptr is modified to point to the beginning of the object C and invokes funcB1 of class
C. This ensures that the function uses the correct offsets into the object, i.e., the thisptr
points to the start of object C. Because the code structure of the vcall is the same, the
program treats calls through sub-vtables and base vtables as analogous.
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Chapter 3
Automated Identification of Cryptographic
Functions in Binaries

Pseudo-random number generators (PRNGs) and cryptographic hash functions (CHFs)
play a fundamental role in the broader security ecosystem. PRNGs provide the basis for
various security mechanisms, such as exploit mitigations (e.g., ASLR [122] and stack cook-
ies [42]) and encryption key generation. Security-sensitive applications such as signature
generation or integrity verification use CHFs. Interestingly, both PRNGs and CHFs are
closely related types of functions—to such a degree that CHFs represent the basis for some
PRNGs in their implementation [87, 106]. In practice, some security-sensitive libraries or
applications (e.g., OpenSSL or OpenSSH) assume the existence of a cryptographically
secure PRNG in the operating system (OS) [3]. Due to the security-critical nature of
PRNGs and CHFs, a weaknesses in their implementation can have severe consequences
for security platforms such as passively decrypting VPN traffic [36], impersonating TLS
secured servers [161], or forging Windows updates to deliver malware [57]. Therefore,
it is essential to evaluate the security of PRNG and CHF implementations on different
platforms.

The first step to assess the security of these algorithms is to find the corresponding
functions within the target application—a straightforward task for open-source software.
However, for proprietary, closed-source software, finding these functions is a crucial hurdle
to the overall analysis success.

Existing research tried to find cryptographic algorithms in binaries by either using
dynamic analysis [73, 101, 160] or relying on static signatures [16, 99]. However, both
approaches have crucial shortcomings. Dynamic analysis struggles with code coverage
and requires specific inputs that trigger the usage of the encryption algorithm, which is
a problem, especially for closed-source applications. Whereas static signatures cannot
identify modified or future variants of algorithms. Moreover, to the best of our knowledge,
no previous work has focused on identifying PRNGs or CHFs in binary executables in a
generic way.
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3.1 Introduction

In this chapter, we present the design of an analysis approach to precisely identify PRNG
and CHF implementations in a given binary executable. Unlike previous related work, our
novel analysis approach works generically without signatures or relying on magic constants
and inputs provided by an analyst. In a first step, we investigated 24 PRNG and 61 CHF
implementations in popular cryptographic shared libraries. We found similarities and
based on these insights we built a generic model encompassing the interactions of both
types of functions with other components of the application and the memory. The model
allows us to abstract away the reliance on concrete implementation details. Therefore, we
regard the corresponding implementation of the PRNG and CHF as blackbox and only
consider their interactions with the rest of the program.

Our approach assumes that PRNGs and CHFs create data with a certain level of ran-
domness. For this, we run the function suspected to correspond to a PRNG or CHF
multiple times to see if the generated data looks random. Our approach emulates the
target function directly, to sidestep coverage problems that related works using dynamic
analysis [73, 101, 160] suffer from. Being able to emulate a function directly allows us
to analyze applications and shared libraries a-like, without the need for test cases that
drive the execution to the target function. However, emulating a function without prior
knowledge about the expected memory layout comes with its own set of challenges. To
tackle these, we introduce techniques built on PRNG and CHF domain knowledge. We
automatically infer an initial memory layout for the function we want to emulate based on
the manually investigated implementations. Additionally, we use coverage-guided fuzzing
to refine the memory layout and fully emulate the function without crashes.

Based on our proposed design, we implement a prototype named TropyHunter to find
PRNGs and CHFs in binary programs in a fully automated way. We evaluate TropyHunter
against six binaries of popular open-source cryptographic libraries and six different open-
source application binaries. Since a PRNG or CHF algorithm is implemented with the
help of multiple functions, we distinguish in our evaluation between identified algorithms
and identified functions. Our evaluation shows the accuracy of TropyHunter’s analysis: for
example, in the case of PostgreSQL, a database server containing over 12,000 functions,
TropyHunter identified 11 functions as being either a CHF or PRNG. A comparison against
the ground truth available in the source code revealed that indeed all the pinpointed
functions are part of a CHF or PRNG implementation. Overall, TropyHunter identified
72 out of 81 CHFs and 24 out of 33 PRNGs in our open-source evaluation set in a fully
automated way. Furthermore, we evaluated TropyHunter against different closed-source
applications. The analysis could again identify various CHF and PRNG functions in these
closed-source binaries. For example, in the case of the authentication module for QNX, a
POSIX-compatible non-Linux OS, TropyHunter identified six CHF and PRNG functions
(the binary has a total of 194 functions). A manual verification confirmed the identified
functions indeed represent the only CHF and PRNG functions in this binary executable.
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Contributions In summary, this chapter makes the following three contributions:

� We develop a generic model of the interactions of PRNGs and CHFs based on the
investigation of 24 PRNG and 61 CHF implementations in popular cryptographic
shared libraries.

� We present the design and implementation of TropyHunter, a generic approach to
pinpoint PRNGs and CHFs in a given binary executable. Furthermore, we develop
techniques to emulate functions without prior knowledge about their expected mem-
ory layout.

� We evaluate TropyHunter against various open- and closed-source binaries and
demonstrate its effectiveness in identifying PRNG and CHF algorithms, even in
large, complex applications.

To foster research on this topic, we released the code for TropyHunter under
https://github.com/RUB-SysSec/tropyhunter.

Outline This chapter is structured in the following way: Section 3.2 gives an overview of
PRNG and CHF implementations and introduces our generic model. Section 3.3 describes
our analysis approach to find PRNG and CHF implementations in binary executables.
The implementation of TropyHunter is explained in Section 3.4, whereas the evaluation
is presented in Section 3.5. We then discuss limitations of TropyHunter in Section 3.6
and give an overview of related work in Section 3.7. Finally, we conclude this chapter in
Section 3.8 and discuss possible topics for future advancements.

The chapter contains new and unpublished materials which is still in submission. The re-
search was performed together with Philipp Görtz, Paul Gerste, Ali Abbasi, and Thorsten
Holz.

3.2 Overview

In this section, we describe the inner workings of PRNGs and CHFs to give an overview
and provide the necessary background information to understand the rest of this chapter.
To create a generic model of their interaction, we manually investigated various imple-
mentations and analyzed how they interact with other components within the application
such as the memory and their caller functions. Based on this generic model, we create
assumptions that we use to identify PRNGs and CHFs within the application binaries.

3.2.1 Pseudo-Random Number Generator

The purpose of random number generators is to generate seemingly unpredictable data.
The randomness of data is critical for the security ecosystem, and its absence can under-
mine the system’s security. Random data is usually created by pseudo-random number
generators (PRNGs). PRNGs are software-based implementations of a deterministic al-
gorithm which stretches an initial input seed into a arbitrary sized sequence of random-
looking bytes. Seemingly random events usually generate these initial input seeds (e.g.,

21

https://github.com/RUB-SysSec/tropyhunter


Chapter 3 Automated Identification of Cryptographic Functions in Binaries

disk activity, keystroke timings, mouse movement, interrupt requests, etc.) and are ag-
gregated to initialize the PRNG. Usually, PRNGs use initial seeds as a first state for their
deterministic algorithm; this algorithm then generates random-looking data. To continu-
ally generate data, PRNGs need to refresh their internal state regularly. This refreshing
is usually done by adding newly generated random data to it, possibly alongside other
sources of entropy. The OS and applications can then use the returned random data.
Examples of PRNG functions are Yarrow [87], Fortuna [106], ChaCha [18], and Mersenne
Twister [105].

Many operating systems provide a cryptographically secure PRNG which is used by
critical security services. For example, Linux offers this functionality in the form of
/dev/urandom, and Microsoft Windows provides similar functionality in their CryptoAPI.
It is worth mentioning that many applications and libraries use their own implementations
of PRNGs instead of using the ones provided by the OS. Examples for such applications
are PHP, Ruby, libgcryp, and libsodium.

There are also random number generators that derive randomness from physical phe-
nomena such as radioactive decays, thermal noise, and other sources of randomness. Such
generators are called true random number generators (TRNGs) and are physical devices.
In modern computers, Trusted Platform Modules (TPMs) or Hardware Security Modules
(HSMs) implement TRNGs (or a combination of a TRNG with a PRNG). Additionally,
Intel started to provide a hardware-based RNG (actually a combination of a TRNG with
a PRNG) with Intel IvyBridge CPUs in 2012 [61]. However, hardware modules are ex-
pensive, are not always available, and may also contain bugs [98]. As a result, PRNGs are
often used in practice and are the focus of our analysis.

3.2.1.1 Inner Workings of PRNGs

Although all PRNGs generate random data, how the algorithms work and how they are
implemented differs. Even PRNGs which use the same algorithm might differ in their
actual implementation. Additionally, in the future, there might be new PRNG algorithms
which further underlines the importance of having a generic model to identify PRNGs.
Hence, we cannot rely on specific implementation artifacts or magic constants to identify
PRNGs generically. To find a common denominator, we investigated 24 different imple-
mentations of PRNGs in popular cryptographic libraries to find similarities and general
features of such algorithms. Based on this analysis, we found that the interactions of the
PRNGs remain mostly the same. As illustrated in Table 3.1, we analyzed how a PRNG
function interacts internally and externally. To be more precise, we investigate how the
PRNG keeps its internal state, how many arguments are passed to the PRNG, what kind
of data is returned, how the PRNG is being initialized before being used, and what the
output size is.

Based on the information we summarized in Table 3.1, we created a generic model of
the inner workings of PRNG implementations, which Figure 3.1 illustrates. Before an
application can obtain random data from a PRNG implementation, the PRNG has to be
initialized (if it is not initialized already). The initialization process prepares the memory
where the PRNG state is stored. It fills this memory with the initial input seed, as well
as other data needed by the implementation (e.g., configuration data used by the PRNG
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Table 3.1: The features extracted by our investigation of all 24 PRNG function imple-
mentations in popular cryptographic shared libraries. The functions selected
for this excerpt cover each option of the features. For each function the table
shows seven different features of the PRNG interaction. The Memory State
describes the memory location where the PRNG stores internal data. The loca-
tion is either given via a pointer, passed as an argument, a static global memory
location, or none is needed (e.g., if /dev/urandom is used). Has Init Flag shows
whether the PRNG has an initialization flag. Based on our study, we find that
the majority of PRNGs have an internal flag indicating whether the PRNG
state is initialized or not. Init Behavior describes how the PRNG implementa-
tion reacts when an expected initialization flag is not set. The implementations
either automatically initialize the memory state, abort the random number gen-
eration or fail without raising an error. Output Size via Argument, describes
whether the PRNG takes an argument which denotes the requested number
of random bytes to generate. Return Data via Argument Pointer describes if
the PRNG function takes an argument holding the destination location for the
generated random bytes. Small Integers in State depicts if the memory state
expects small integer values in some fields. 32 Bit Output describes whether
the output of the PRNG is fixed to 32 bit.

Program Function Name Memory State Has Init Flag Init Behavior
libnettle nettle yarrow256 random Pointer by Argument X Abort
libnettle nettle knuth lfib random Pointer by Argument 7 No Error
libcrypto drbg ctr generate Pointer by Argument 7 No Error
libcrypto drbg hash generate Pointer by Argument 7 No Error
libcrypto drbg hmac generate Pointer by Argument 7 No Error
libcrypto OPENSSL ia32 rdrand bytes None 7 Not Needed
libgcrypt mix pool Pointer by Argument 7 No Error
libsodium randombytes sysrandom buf Global Memory X Auto Init
libsodium randombytes sysrandom Global Memory X Auto Init
libtomcrypt sober128 read Pointer by Argument X Abort
libtomcrypt yarrow read Pointer by Argument X Abort
libwolfssl Hash DRBG Generate Pointer by Argument 7 No Error

Program Function Name Output
Size via

Argument

Return Data
via Argument

Pointer

Small
Integers in

State

32 Bit
Output

libnettle nettle yarrow256 random X X 7 7
libnettle nettle knuth lfib random X X X 7
libcrypto drbg ctr generate X1 X 7 7
libcrypto drbg hash generate X1 X 7 7
libcrypto drbg hmac generate X1 X 7 7
libcrypto OPENSSL ia32 rdrand bytes X X 7 7
libgcrypt mix pool 7 X 7 7
libsodium randombytes sysrandom buf X X 7 7
libsodium randombytes sysrandom 7 7 7 X
libtomcrypt sober128 read X X 7 7
libtomcrypt yarrow read X X X 7
libwolfssl Hash DRBG Generate X X 7 7

1 It depicts that next to the size argument another non-pointer argument exists.
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Figure 3.1: Our interaction model of PRNGs and CHFs containing the communication
with the caller function and the interaction of the algorithms with the memory.
The dotted boxes show components that are only used by a PRNG. The dashed
boxes depict parts that are only used by a CHF.

implementation). We call this memory the PRNG memory state. The initial input seed
is aggregated using different sources (e.g., time, or processor clock cycles). The PRNG
initialization returns a pointer to the PRNG memory state to the caller function as shown
in steps 1 to 3 of Figure 3.1. Note that these three steps are only required if the PRNG
is not already initialized. Next, the caller function executes the PRNG algorithm by
providing the pointer to the PRNG memory state (as well as other required arguments),
as illustrated in step 4. Step 5 shows the deterministic PRNG algorithm using the PRNG
memory state to generate random bytes. Additionally, in step 6, the PRNG memory state
is refreshed with new random data. Finally, in step 7, the generated data is returned
to the caller function. Note that depending on the implementation of the PRNG, the
actual interactions between the caller function of the application and the PRNG can differ.
However, the basic principle remains the same: the deterministic PRNG algorithms work
on a memory state to generate random data.

3.2.2 Cryptographic Hash Function

Hash functions are implementations of a deterministic algorithm which usually maps ar-
bitrary sized input data to a fixed sized sequence of bytes. The hash algorithm always
yields the same output data for the same input. Since not all hash functions are crypto-
graphically secure, not all of them are suitable for security-sensitive operations. For such
operations, one can use cryptographic secure hash functions (CHFs) such as MD5, SHA-
2, or SHA-3. CHFs have additional properties like collision resistance or being one-way
functions [117].
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Table 3.2: The features extracted by our investigation of all 61 CHF implementations in
popular cryptographic shared libraries. The functions selected for this excerpt
cover each option of the features. For each function the table shows four features
of CHF interactions. The Memory State describes the memory location used by
the CHF to store internal data. Within the 61 observed CHF implementations,
the location is always given via a pointer which is passed as an argument. Input
Size via Argument describes whether the CHF takes an argument denoting the
size of the input data. Fixed Output Size depicts if the output size is fixed or
dynamic. Finally, Output Data describes how the calculated data is returned
to the caller function. Depending on the component of the CHF, the data is
either integrated into the memory state because the hash calculation is not yet
finalized or the final digest is placed into a memory location given as pointer
by an argument.

Program Function Name Memory State Input Size via Argument
libnettle nettle ripemd160 compress Pointer by Argument 7
libnettle gost block compress Pointer by Argument 7
libcrypto SHA512 Final Pointer by Argument 7
libcrypto WHIRLPOOL Final Pointer by Argument 7
libcrypto blake2b compress Pointer by Argument X
libgcrypt whirlpool final Pointer by Argument 7
libgcrypt blake2s transform Pointer by Argument X
libtomcrypt rmd320 done Pointer by Argument 7
libtomcrypt sha3 shake done Pointer by Argument 7
libwolfssl Transform Sha256 Pointer by Argument 7
libsodium SHA512 Transform Pointer by Argument 7
libsodium blake2b compress ref Pointer by Argument 7

Program Function Name Fixed Output Size Output Data
libnettle nettle ripemd160 compress X Integrated in State
libnettle gost block compress X Integrated in State
libcrypto SHA512 Final X Explicit Output Pointer
libcrypto WHIRLPOOL Final X Explicit Output Pointer
libcrypto blake2b compress X Integrated in State
libgcrypt whirlpool final X Integrated in State
libgcrypt blake2s transform X Integrated in State
libtomcrypt rmd320 done X Explicit Output Pointer
libtomcrypt sha3 shake done 7 Explicit Output Pointer
libwolfssl Transform Sha256 X Integrated in State
libsodium SHA512 Transform X Integrated in State
libsodium blake2b compress ref X Integrated in State
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3.2.2.1 Inner Workings of Cryptographic Hash Functions

On a high-level, CHFs are similar to PRNGs. Therefore, we cannot rely on algorithm
implementation specifics (e.g., magic constants) to find CHFs generically. As we did for
PRNGs, we investigated 61 different implementations of CHFs in popular cryptographic
shared libraries to find similarities. We found that the internal and external interactions
of the CHFs also remain mostly the same. As illustrated in Table 3.2, we analyzed how a
CHF interacts with the rest of the application. To be more precise, we investigated how
the CHF keeps its internal state, whether the input size is passed via function arguments,
if the output size is fixed or not, and how the output data is returned. Note that the table
shows two different components of CHF implementations because a CHF usually has two
components: one that adds new data to the hash calculation and a second that finalizes
it. The former does not return a hash value but instead places the generated data into its
internal memory state, while the latter returns the calculated hash digest.

Since the PRNG and CHF models have significant overlaps, we integrated both models
in Figure 3.1. The CHF has to be initialized, as illustrated in steps 1 to 3. The only
difference to PRNGs is that the initialization process uses well-known constants (“magic
constants”) instead of random data. As depicted in step 4, when a routine calls the CHF
to generate output, it provides a pointer to the hash memory state. Using the provided
memory state, the hash algorithm function (e.g., MD5 or SHA-3) generates the output
data and updates the hash memory state, as depicted in steps 5 and 6. Finally, the output
data is returned to the caller function, as shown in step 7. We can see the similarity
between PRNGs and CHFs when viewed in the form of our model. Similar to PRNG
algorithm functions, the interactions between the caller function of the application and
the CHFs can differ depending on the implementation—however, the underlying principle
of the algorithm working on a memory state to generate a hash value is always the same.

3.2.3 Assumptions

PRNGs have specific characteristics which can help us to identify them in a given binary
executable. As the purpose of a PRNG is to generate random data, identifying procedures
that generate different data each time they are executed is a straightforward way to find
PRNG algorithm functions. However, this approach is too broad: any function would be
classified as a PRNG function if it returns different data when called multiple times (e.g.,
time, malloc, etc.).

To improve this näıve approach, we assume that PRNG functions create data with a
higher quality of randomness than other functions. Based on this assumption, we can as-
sess the generated randomness and filter out functions that do not meet a certain threshold
of randomness (such as malloc). To verify whether a function generates enough random-
ness, we can use random number generator tests such as Birthday Spacings Test or Parking
Lot Test [24].

A similar approach can be applied to find CHFs in binaries. Since CHFs update their
memory state each time they are executed as depicted in Figure 3.1, they also create
random-looking data each time. Furthermore, CHFs have the property that a small change
in the input value changes the output data extensively to prevent correlation between
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similar input values (called avalanche effect [117]). As a result, the output also passes the
random number generator test and, thus, CHFs can also be identified by the randomness
of the created data.

3.3 Approach

We base our approach on the observation that executing a PRNG function multiple times
yields different random data each time. A deterministic PRNG algorithm achieves this by
holding a state which is updated after each usage as illustrated in steps 5 and 6 of Fig-
ure 3.1. Hence, we execute a possible PRNG function multiple times without re-initializing
the memory in between and check the output for sufficient randomness. Because the PRNG
algorithm updates its memory state itself each time it is executed (thus re-initializing the
memory would revert this update), the output differs after each execution. As the hash
algorithm also updates its internal state each time it is used (also depicted in steps 5 and
6 of Figure 3.1), the same holds for CHFs. Executing the CHF multiple times without re-
initializing the memory in between also results in seemingly random output. As CHFs also
create vastly different-looking output with each change, the randomness of it is sufficient
to pass random number generator tests. Note that this approach targets the algorithm of
the PRNG and CHF itself, and ignores the initialization routine. Hence, in the following,
we refer to algorithm function when speaking about the algorithm for both PRNGs and
CHFs.

First, our analysis uses heuristics to narrow down the set of candidate algorithm func-
tions. On these candidate functions, a more thorough analysis is performed by executing
them multiple times. However, to execute a specific candidate function, we have to provide
the application with proper input to reach it. Since our analysis targets binary applica-
tions, having proper input to reach all functions in the application that we want to analyze
is an unrealistic requirement. For binary shared libraries, this requirement becomes even
more unrealistic, since in addition to the needed input the analyst has to provide code
that uses the functions of the library. To avoid having to fulfill these requirements, our
approach emulates the functions directly instead of executing them. To this end, we iden-
tify the arguments the function uses before it is emulated. Next, the function is emulated
multiple times to generate output data. However, emulating unknown functions without
knowledge about them (e.g., expected memory layout) is a challenging problem in itself.
Thus, based on the features shown in Table 3.1 for PRNG and Table 3.2 for CHF imple-
mentations, we introduce a technique that allows us to infer concrete input data without
prior knowledge of memory layout or content. Finally, we use randomness tests on the
generated output data to confirm an algorithm function. If we have indeed found an algo-
rithm function, we try to classify it as a PRNG or CHF to give the analyst an additional
hint to base their work on.

Our approach consists of five steps: (A) Function Preselection, (B) Argument Inference,
(C) Emulation, (D) Check for Randomness, and (E) Classification. In the following, we
describe each step in detail.
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3.3.1 Function Preselection

To reduce the number of functions to analyze in-depth and hence improve the performance
of our approach, we first search for candidate functions with specific characteristics. We
preselect the functions by using the following three heuristics that aim to identify PRNG
and CHF implementations:

Instruction Heuristic Various hardware architectures provide different instructions for
cryptographic purposes. For example, the x86-64 instruction set provides rdrand to gen-
erate a random number or aesenc to perform an AES encryption round [80]. Similarly,
ARM AArch64 offers instructions to perform various cryptographic operations. For ex-
ample, AArch64 provides aese or sha256h to perform AES or SHA-256 operations [13].
Therefore in this heuristic, we mark all functions containing at least one cryptographic
instruction as candidate functions.

API Heuristic Operating systems usually offer an API for cryptographic purposes. For
example, Linux provides a system call to create random numbers (sys getrandom), Win-
dows provides the CryptGenRandom function in their CryptoAPI to provide cryptograph-
ically random bytes, and Linux-like operating systems provide a cryptographically secure
PRNG via block devices (e.g., /dev/urandom). Functions using such APIs (e.g., reading
from /dev/urandom or using the sys getrandom syscall) are marked as viable candidates.

Arithmetic Heuristic This heuristic follows the insight of work proposed in the litera-
ture [73, 101, 159] that cryptographic functions contain considerably more arithmetic and
bitwise instructions (e.g., mul or xor). Hence, a function having basic blocks with a high
ratio of arithmetic instructions (exceeding a specific threshold described in Section 3.4)
are considered candidates.

Functions marked by these three heuristics are candidates for cryptographic operations.
However, some PRNGs and CHFs separate their implementations into multiple functions
(e.g., SHA-512 in libcrypto) or rely on other algorithms to generate data (e.g., the Yarrow
PRNG algorithm uses a block cipher such as AES). Hence, we also consider the caller
functions of each function detected by a heuristic as a candidate function for a more
thorough analysis.

3.3.2 Argument and Type Inference

Once we have obtained a list of candidate algorithm functions, we try to emulate these.
However, since our approach emulates a candidate function directly, we need to know
the expected arguments of the function. More specifically, we need to know the number
of arguments that are used, as well as their type. In the context of this work, we only
need to consider two types of function arguments: pointer (e.g., a register pointing to an
object in memory) and value (e.g., the number of output bytes). To identify the number
of arguments and their types, we track the data flow from each function argument with
the help of the Static Single Assignment (SSA) form [45]. Depending on the usage of the
arguments, we can infer their type (and if the argument is used at all). If an argument
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is used as a value by an instruction (e.g., as an argument to an arithmetic operation), we
consider its type to be a value. Analogously, if the argument is used in a memory context
(e.g., dereferencing), we consider its type to be a pointer. Alternatively, we can identify
a variable type if a function uses it with a known prototype. For example, if a candidate
function argument is passed as an argument for the libc function memset, we can infer the
type from the known prototype of the libc function [96,102]. Note that this is not limited
to the libc, but works for other known libraries or APIs (e.g., the Windows API) as well.

While this approach works for most cases, we have to be aware of some edge cases.
For example, if the instruction cmp rdi, 8 is in the data flow, we can safely assume the
argument to be of type value. In contrast, the instruction cmp rdi, 0 does not provide
a conclusive result as that instruction is also used to check for null pointers. Therefore,
we cannot distinguish between value or pointer as a possible argument type here. Other
examples are optimization tricks performed by the compiler, e.g., the instruction lea is
often used to perform an addition of two values, despite its actual purpose of working with
pointers. Hence, we cannot safely infer the type of the argument in these edge cases. As
our analysis is done in an intra-procedural way, determining the type may fail. In these
cases, we mark the argument registers with the special type unknown for the subsequent
analysis steps and proceed.

3.3.3 Emulation

Knowing the inferred argument register types, we are nearly able to start the emulation
of the target function. However, to emulate a function with an argument of type pointer,
we need to create a valid memory object. For example, a pointer argument may point
to a data structure consisting of multiple data fields. To properly emulate this function,
we have to provide valid-looking data in the form of the expected structure. Otherwise,
the function might crash. Similarly, for function arguments of type value, we also need to
generate valid input data. Once we have found valid input data, we emulate the function
multiple times. The emulation creates the output data we need to determine if we have
found an algorithm function. Figure 3.2 depicts a flowchart of the whole emulation process.

3.3.3.1 Input Generation

Since our goal is to emulate algorithm functions, we can leverage domain knowledge of
typical PRNG and CHF implementations to craft appropriate inputs. In the case of
PRNGs, an argument of type value refers to the number of bytes which the algorithm
has to generate as depicted in Table 3.1 in the column Output Size via Argument. Note
that only three exceptions were found that had an argument of type value in addition to
the size argument. For CHFs, the argument of type value holds the number of bytes the
algorithm has to read (as shown in Table 3.2 in the column Input Size via Argument).
Hence, it is sufficient just to place an integer value into these arguments.

Arguments of type pointer are a pointer to the algorithm memory state, a pointer to
the destination to which the algorithm should write its data, or a pointer to the source
from which data is read. Hence, if an argument has the inferred type pointer, we allo-
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Figure 3.2: Flowchart depicting the different parts of the emulation process to determine
if the candidate function is a PRNG/CHF or not.

30



3.3 Approach

cate memory and store the address of it in the argument. We discuss our strategies for
initializing the allocated memory in the following section.

For the emulation of a function with an argument marked as unknown, we try both
types: value and pointer. If one type does not result in a successful emulation, we retry
with the other type.

3.3.3.2 Memory Initialization Strategies

Input generation for arguments of type pointer is more complex compared to value ar-
guments. This complexity is caused by the fact that we cannot know beforehand how
the function expects the initialized memory to look like (e.g., does the memory object
have certain fields that must be set?). We try different memory initialization strategies to
successfully emulate the function and generate random output data. If the emulation is
unsuccessful (i.e., it crashes), the memory initialization strategy is changed and the pro-
cess restarts. Note that we do not need to know the exact purpose of the pointer argument
(a pointer to the memory state, a pointer to input data, or a pointer to the output des-
tination) for our memory initialization strategies to work. We just assume each of them
as a potential pointer to the algorithm memory state. If we initialize the memory of an
output destination, it just gets overwritten during the emulation of the candidate function
and does not affect our analysis. If we initialize the memory of a pointer to input data,
the algorithm just uses the provided data for its calculation and does not affect our base
assumption about the algorithm. Part a) in Figure 3.2 depicts the memory initialization
process.

For the emulation, we use the following input memory initialization strategies:

� Zero initializes the allocated memory with zero. This basic strategy is sufficient for
the majority of the CHFs we encountered. Furthermore, we found PRNG imple-
mentations having an is initialized flag in their state. If this flag is set to zero
(meaning that it is not initialized), some PRNG algorithms automatically initialize
the PRNG memory state, as shown in Table 3.1. This behavior helps us to properly
emulate the actual algorithm without any further search for the correct memory
layout. Thus, we test this strategy first.

� Random initializes the allocated memory with random bytes. Some PRNG imple-
mentations which use the is initialized flag do not automatically initialize the
memory state. Instead, they go to an error-handling routine or fall short of reporting
any error at all. In such situations the Zero strategy fails, thus filling the allocated
memory with random bytes may lead to a successful emulation.

� Random8Plus initializes the allocated memory with 8 bytes aligned positive random
integers which are equal or smaller than 255. The reasoning behind this strategy is
that we encountered PRNG implementations that for example store the number of
AES rounds (which at maximum is 14) in their PRNG memory state. When filling
this field with a large number, the emulation of the algorithm function would take up
too much time to finish. Hence, filling the memory state with small positive random
integers circumvent this problem. Table 3.1 depicts in the column Small Integers
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in State PRNG implementations requiring small integer values in certain memory
state fields.

� Random4Plus initializing the allocated memory with small positive random integers
4 bytes aligned. This strategy follows the same reasoning as the Random8Plus
strategy, however, it focuses on fields of the memory state that are 4 bytes in size.
We encountered PRNG implementations which even though they were compiled for
a 64 bit architecture, only used 32 bit fields.

� RandomPlus initializes the allocated memory with positive random integers. We do
this by setting the most significant bit of each byte to zero (so it will be a positive
integer). Note that in this strategy the integer value can be a large number. The
reasoning behind this strategy is that there might be a specific memory state field
which has a size less than 4 bytes (e.g., 1 byte). When we use either Random8Plus
or Random4Plus as strategy, the PRNG algorithm function might read the most
significant bytes. In such cases, the value read is zero, and thus, the algorithm
might not run. To avoid such cases, we use this strategy. Note that this strategy
also addresses the shortcomings of the Random strategy as it handles cases where a
field only expects a positive integer. The Random strategy might fill the field with
a negative integer and thus fail a check.

During our research, we did not encounter an implementation that requires correspond-
ing strategies for negative values, namely Random8Minus, Random4Minus, and Random-
Minus. Hence, we omit those to have a better performance during the analysis process.
In Section 3.5.3, we will show with an ablation study that each of the presented strategies
contributes to the effectiveness of our approach.

Once we have achieved a successful emulation, subsequent emulations use the same
input. Using the same input means that the memory layout is preserved between the
emulations and we do not re-initialize it. This is an important aspect of our analysis,
as our assumption is that the algorithm function updates its memory state each time
it is executed to create different-looking output data. Re-initializing the memory layout
with our memory initialization strategies would destroy the update made by the algorithm
function. We repeat the emulation until we extracted sufficient output data for our ran-
domness tests. We further discuss extracting sufficient output data in Section 3.3.3.3. It
is worth mentioning that during the emulation the candidate function may try to access
unallocated memory locations. To let the emulation continue, we catch these accesses and
allocate the requested memory on-the-fly.

If a strategy does not work, we first try a fine-grained modification of the memory layout
to get a successful emulation as we describe in detail in Section 3.3.3.4. If the memory
layout modification does not succeed either, we restart the emulation process with the
next memory initialization strategy. Finally, when no strategy is left (and we still do not
have random output), we discard the candidate function.
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3.3.3.3 Output Extraction

To gather data for the randomness tests, we have to extract the output data from the
emulator after each successful emulation. To extract the data, we can again leverage
domain knowledge of typical PRNG and CHF algorithms to pinpoint possible output
destinations. Based on the analyzed PRNG and CHF implementations (see Table 3.1 and
Table 3.2), the output data is either returned via a register (e.g., for a randomly generated
integer) or via memory pointer (e.g., in case of randomly generated data of arbitrary length
or CHF results). Therefore, we only need to consider return registers and the memory
location function arguments of type pointer point to as output destinations. We store the
generated data and start the next emulation, just as PRNGs are called multiple times to
create more output data.

We identify output destinations that contain the same data for multiple emulations. This
identification allows us to improve performance as we can dismiss these output destinations
after a threshold (see Section 3.4 for implementation details). If we dismissed all output
destinations, the emulation is either unsuccessful (because the provided memory layout
is wrong) or it is not an algorithm function. Since we cannot differentiate between both
cases, we continue to search for a working memory layout for the emulation process. Part
b) of Figure 3.2 depicts the output extraction process.

3.3.3.4 Fuzzing Memory State

Even though we have different memory initialization strategies, they can potentially be too
imprecise to guarantee a successful emulation (see our evaluation of our proposed memory
strategies in Section 3.5.3). For example, consider the memory structure for the PRNG
implementation in Figure 3.3. The memory state struct consists of three fields, as shown
in lines 1 to 5. These fields vary widely in their expected content, making it unlikely
that our memory initialization strategies yield a successful emulation as they apply to
the whole memory state. Hence, the function get random is likely to fail to generate
random data when only resorting to our memory initialization strategies. For example, if
we use the random strategy, our chance to get 0 in the error code field is low; causing the
function to abort (problem 1). If we use anything other than the Random8Plus strategy,
the no rounds field is likely to have a large value or 0, causing the function to timeout
or to never enter the randomization part of the function (problem 2). If we use the zero
strategy, the data field is also initialized to 0; as the update calculation uses multiplication
a 0 in the data field will always result in an output of 0 (problem 3).

The underlying problem of these initialization strategies is that they are potentially too
coarse-grained. Hence, if the emulation was unsuccessful (i.e., the function crashed or
every output destination was dismissed) by using a coarse-grained memory layout, we try
to create a fine-grained one. More specifically, we search for a fine-grained memory layout
by identifying different fields in the memory state and initializing them individually. To
identify memory fields in the memory state during the emulation process, our emulator
tracks all memory read and write operations. We classify all locations as memory fields
that are read before any write operation was performed on it (if any write operation is
performed at all). We can safely ignore memory locations that are written by the algorithm
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1   typedef struct state { 

2       int no_rounds; 

3       int error_code; 

4       int data[128]; 

5   } memory_state; 

6 

8   int get_random(memory_state *state) { 

9 

10      /* Check PRNG if in error state */ 

11      if(state->error_code) { 

12          return 0; 

13      } 

14 

15      /* Generate random number */ 

16      int result = state->data[0]; 

17      for(int i=0; i < state->no_rounds; i++) { 

18 

19          /* Do some arithmetic on result with state->data */ 

20          [...] 

21          result = state->data[0] 

22 

23          /* Update PRNG state */ 

24          for(int j=1; j < 128; j++) { 

25              state->data[j-1] = state->data[j % 128] * 0xCAFE; 

26          } 

27      } 

28      return result; 

29  } 

Problem 1
Error state check

from memory state.

Problem 2
Number of rounds

from memory state.

Problem 3
State data update calculation

based on multiplication.

Figure 3.3: Code example showing three problems preventing a successful output genera-
tion if the different fields of the memory state are not considered individually.
Note that this code example is constructed to highlight the problems we en-
countered in practice.
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function before they are read (e.g., temporary data fields), as the function initializes them.
Once we identified memory fields, we start fuzzing them by using the same input generation
strategies as described in Section 3.3.3.2. Part c) of Figure 3.2 depicts the memory fuzzing
process. We start our fuzzing process in the following situations:

� Emulation Crashed : if the emulation of the algorithm function crashes with the
selected memory initialization strategy, we use fuzzing for a limited time and try to
generate a valid memory layout. If the fuzzing is successful (the function does not
crash), we start our data collection process with the fuzzed memory layout.

� Output Destinations Dismissed : if the emulation dismissed all output destinations,
we use fuzzing for a limited time to generate more code coverage. The emulator
tracks each basic block that is reached during the emulation. Once our fuzzing pro-
cess reaches a new basic block, the emulation process restarts with the newly created
memory layout as the initial configuration. This way, error checks are bypassed suc-
cessfully (e.g., problem 1 in Figure 3.3), and a valid memory layout for the candidate
function can be found.

3.3.4 Check Generated Output for Randomness

To decide if we have found an algorithm function, we check the quality of the created
random data. More specifically, we check the output data against a random number
generator test suite consisting of multiple tests. If at least one of its tests pass, we consider
the candidate an algorithm function. We use multiple random number generator tests as
a single one might incorrectly fail and dismiss an actual PRNG or CHF.

Most random number generator tests need a lot of data to work on (ranging from several
MBs to multiple GBs of required data). However, if not enough data is provided, the test
suite duplicates the same data to satisfy its data size requirement. This duplication results
in a lower quality for the generated random data and may lead to erroneously failing tests.
However, generating more data requires more emulation time, which in turn increases the
total time needed for the analysis. For example, multiple random number generator tests
failed to recognize a PRNG implementation of libtomcrypt (using the RC4 algorithm) due
to limited input data. By using multiple random number generator tests, we reduce false
dismissals, while improving the overall runtime.

Should all random number generator tests fail, we restart with a new memory initial-
ization strategy. Part d) of Figure 3.2 shows the randomness test process.

3.3.5 Classification

Up to this point, we only determined if a function behaves as assumed in our interaction
model in Figure 3.1 and generates random data. However, the analysis does not clearly
distinguish between PRNG and CHF. To give the analyst an indicator, we developed
a classification process based on the observation that PRNG implementations usually
generate an output of arbitrary size, while CHFs do not (except for SHA-3 as discussed
in detail in Section 3.6).
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As Table 3.1 demonstrates, most PRNG implementations have an argument providing
the requested size of random data to create. Hence, we assume only function arguments of
type value as output size arguments. To determine if an argument is the output size, we
systematically place different sizes into these arguments. Then we restart the emulation
(with the working memory layout we already established in Section 3.3.3) and check if
the corresponding output destination contains the given amount of generated data. If
the algorithm function generates all the requested sizes and places them into the output
destination, we consider this function as a PRNG implementation. Otherwise, we consider
it as a CHF. However, note that this is only an indicator for an analyst, as Table 3.1 shows
that for example mix pool of libgcrypt generate a fixed size output which would lead to a
wrong classification. Additionally, as soon as the output is placed into a return register,
we neither classify it as CHF nor PRNG. This distinction between PRNG and CHF is
only to offer the analyst additional information.

3.4 Implementation

We implemented a prototype called TropyHunter as a proof of concept based on the ap-
proach presented in Section 3.3. TropyHunter uses IDAPython [79] for disassembling
binaries and Unicorn [154] to emulate the candidate functions. It is written in Python
and targets Linux x86-64 (amd64) binaries. Because IDA Pro [78] and Unicorn support
multiple architectures, TropyHunter is easily extensible to work with other architectures
(e.g., ARM) or platforms (e.g., Windows). Since the concept of our approach is archi-
tecture agnostic, extending TropyHunter to other architectures or platforms is merely an
engineering effort (e.g., adding a new calling convention or writing a loader for the target
file format). Our prototype implementation is fully automated and requires no interaction
with the user. After providing TropyHunter with the binary file, it prints a list of found
PRNGs and CHFs for further analysis.

The arithmetic heuristic used for the function preselection searches for basic blocks
exceeding a certain ratio of arithmetic instructions (e.g., mul or xor). Since related work
differ greatly in their used thresholds (e.g., 0.15 in [101] and 0.55 in [73]), we determined
the optimal ratio value for our implementation after analyzing popular cryptographic
libraries. We find that a ratio of 0.3 finds all relevant PRNG and CHF functions, while
not missing any algorithm.

We limit the running time for both emulation and fuzzing based on empirical expe-
rience, both parameters are configurable if the need arises. Since we do not know the
expected memory layout and try to create a valid one, emulation may have long runtimes
or not terminate at all (e.g., infinite loops). TropyHunter terminates each emulation after
20 seconds to guarantee timely termination. During the fuzzing phase, we again limit
the process to 20 seconds. The timeout values are obtained by our empirical trials and
provide a balance between performance and accuracy: increasing any timeout value did
not result in better results and only increased the runtime. To further reduce the runtime
of our analysis, we dismiss output destinations if they contain identical data five times
since a function creating the same data over and over again is neither a PRNG nor a CHF
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(as described in Section 3.3.3.3). During our tests, the threshold of five times delivered a
performance improvement without introducing any false negatives.

The emulation of the candidate function repeats until it creates a configurable number
of output bytes. During our tests, we found 200 kB to be sufficient for our random number
generator tests to pass. The created random data is checked with multiple tests from the
dieharder random number generator test suite [24]. To generate the required amount
of 200 kB output data, we adopt the following process: PRNG implementations mostly
create random data of arbitrary sizes (as illustrated in Table 3.1 in column Output Size
via Argument) and usually have an argument of type value as a size parameter. However,
instead of just setting the value to 200 kB, we pass the value 8 specifying an output of
8 bytes. We then emulate the function multiple times until we have enough output data
(by aggregating each 8 bytes output data until we obtain 200 kB in total). We favor this
approach for two reasons: First, our PRNG and CHF model presented in Section 3.2 shows
that the algorithm function updates a memory state which is used to generate different
random data each time it is executed. Hence, to take this model into account in our
analysis, we have to emulate the candidate function multiple times with the same input
to determine if it is an algorithm function (and in this case a PRNG function). Second,
emulating a function with 200 kB of output data usually takes more than 20 seconds
(our timeout threshold). Increasing the timeout at this point is too costly to the overall
runtime of the analysis, as the runtime cost has also to be paid for the vast amount of
non-PRNG and non-CHF functions. Should the candidate function not take the output
size via a function argument, we only extract 4 bytes of output data. This is based on our
observations in Table 3.1 in column 32 Bit Output : if a PRNG function does not have a
dynamic output size, some implementations only generate 32 bits output.

3.5 Evaluation

We evaluated TropyHunter on both open-source and closed-source applications. Open-
source applications allow us to measure the reliability of our analysis by validating
the PRNGs and CHFs against a ground truth. To demonstrate the capabilities of
TropyHunter, we also chose various closed-source applications, ranging from large
desktop-level binaries with more than 600,000 functions to smaller embedded applications
which are part of a POSIX-compatible real-time OS. Furthermore, to identify the impact
of different memory initialization and fuzzing strategies on the results, we describe their
effect on identifying PRNGs and CHFs. We performed all experiments for our evaluation
on an Ubuntu Server 18.04 LTS virtual machine with 32 cores and 128 GB of RAM
running on a server with two Intel Xeon Silver 4114 processors.

3.5.1 Open-Source Applications

We evaluate TropyHunter on a diverse set of open-source software to generate a ground
truth for our analysis. We chose a set of 12 programs for our evaluation, amongst them
six popular cryptographic shared libraries: libwolfssl 3.15.7, libgcrypt 1.8.4, libcrypto 1.1.2
(OpenSSL), libnettle 3.4, libsodium 1.0.16, and libtomcrypt 1.18.2. Note that these are the
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Table 3.3: Results of the analysis accuracy of TropyHunter for PRNGs and CHFs on the
function level for the six cryptographic shared libraries and six other programs.
#Functions Total indicates the total number of functions within the program
that are identified by IDA Pro [78]. #Found describes the number of PRNGs or
CHFs which were identified by TropyHunter. #Algorithm are functions that are
part of a PRNG or CHF algorithm. #Other Cryptography are functions that are
directly connected to PRNG or CHF or other cryptographic algorithms. #False
Positives indicates functions which were identified but could not fit the other
categories. We omit a column showing false negatives, as a clear distinction of
members of this group on the function level is not always possible.

Categories

Program
Time

(hh:mm:ss)
#Functions

Total
#Found #Algorithm

#Other
Cryptography

#False
Positives

libwolfssl 4:50:01 1,194 10 6 4 0
libgcrypt 12:36:23 1,531 77 30 46 1
libcrypto 54:06:22 6,387 103 32 71 0
libnettle 2:55:06 578 34 16 18 0
libsodium 9:28:22 991 15 11 4 0
libtomcrypt 9:41:51 1,192 55 46 7 2

PHP 43:41:05 10,398 35 33 1 1
Ruby 21:43:22 6,153 2 2 0 0
Lighttpd 0:29:31 834 4 4 0 0
PostgreSQL 13:00:51 12,341 11 11 0 0
libaprutil 1:03:24 834 4 4 0 0
libapr 7:03:32 1,339 2 2 0 0

Sum 43,772 352 197 151 4

libraries which we used to create the interaction model for PRNG and CHF implementa-
tions depicted in Table 3.1 and Table 3.2. To show that our analysis approach works in
a generic way and is not limited to only those libraries, we also evaluated TropyHunter
on additional programs, namely PHP 7.3.2, Ruby 2.6.1, Lighttpd 1.4.54, PostgreSQL 11.4,
and the Apache Portable Runtime (libaprutil 1.6.1 and libapr 1.7.0) which contains the
platform-specific implementations for the Apache web server.

We split the evaluation of open-source software into two parts: first, we evaluate based
on the functions to show what kind of functions TropyHunter identifies. Then we evaluate
with regards to the algorithms (e.g., MD5, SHA-256, or Fortuna) to measure the accuracy
of TropyHunter in actually identifying PRNGs and CHFs in a program. The rationale
behind this split is that an algorithm may also use helper functions (e.g., for managing
the memory, such as malloc, or to perform a specific calculation). Additionally, these
helper functions might be reused by multiple functions (possibly unrelated to the PRNG
or CHF algorithms). As a result, it is not always possible to decide which functions belong
to which implementations. In summary, we evaluate on function and algorithm level, while
also respecting ambiguous results.
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3.5.1.1 Function Level

Table 3.3 shows the evaluation results. We divided the found functions into three different
categories: Algorithm, Other Cryptography, and False Positives. The Algorithm category
contains functions that implement a PRNG or CHF algorithm (or a part of it). Since
an implementation of an algorithm is separated into several functions, TropyHunter often
finds multiple functions belonging to one algorithm.

The Other Cryptography category contains functions related to PRNGs and CHFs or
other cryptographic algorithms, that we cannot clearly dismiss as false positives. This
category contains functions that use a PRNG or CHF internally and consequently are
found by TropyHunter. For example, the function gcry md hash buffer in libgcrypt
provides a simpler interface to the developer and wraps multiple CHFs. Additionally, this
category contains other cryptographic algorithms found by TropyHunter. For example,
stream ciphers and block ciphers in operation modes that transform them into a stream
cipher (e.g., counter mode or output feedback mode). Since cryptographically secure
PRNGs and stream ciphers are basically the same (i.e., most stream ciphers generate a
stream of random data that is xor combined with the plaintext to encrypt it [84]), they
are identified. Analogously, message authentication code (MAC) functions are found since
they are similar to CHFs and, additionally, CHFs are often used as a building block
for MAC functions [84]. Furthermore, TropyHunter found functions that were executing
different cryptographic operations (e.g., elliptic curve arithmetic).

The False Positives category contains the remaining functions that TropyHunter found.
Interestingly, these functions are still related to cryptographic algorithms as all identified
functions implement some kind of checksum.

We do not evaluate the number of false-negative functions—however, we do assess false-
negative algorithms in Section 3.5.1.2. We are not able to provide an objective number
of false-negative functions due to two reasons: First, an algorithm may use helper func-
tions which could be reused by multiple functions, possibly unrelated to PRNG or CHF
algorithms, making it impossible to distinguish if a helper function belongs to a specific
algorithm. Second, TropyHunter is not designed to find every single function of an algo-
rithm. It is designed to find functions that correspond to our proposed interaction model
and create randomness. Not every function of an algorithm satisfies these requirements
by itself. As a consequence, we omit false-negative functions from our evaluation and only
evaluate false negatives on the algorithm level (see below).

Table 3.3 shows that the majority of the identified functions are part of a PRNG or CHF.
Searching a total of 43,772 functions, TropyHunter marks 352 (0.8%) functions as relevant.
Of the 352 functions, we correctly find 197 Algorithm and 151 Other Cryptography func-
tions, while producing 4 False Positives. We got the worst result for libcrypto, where we
find 103 in 6,387 functions, of these 103 found functions 32 are Algorithm functions. The
reliability of our analysis decreases if the target application is a cryptographic shared li-
brary. This is because these libraries contain a diverse set of cryptographic functions (e.g.,
encryption functions, MAC functions, CHFs, or PRNGs) and, therefore, TropyHunter
finds multiple functions related to PRNGs or CHFs. As a result, cryptographic shared
libraries are a stress test for TropyHunter.
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For applications other than cryptographic libraries, the results are much better (see
lower part of Table 3.3). For example, in the case of PHP, a complex application with over
10,000 functions, TropyHunter identifies 35 functions, 33 of them are Algorithm functions.
In Ruby, Lighttpd, PostgreSQL, libaprutil, and libapr, we can report a precision of 100%
as all identified functions are Algorithm functions.

3.5.1.2 Algorithm Level

The implementation of an algorithm (e.g., MD5, SHA-256, or Fortuna) is usually divided
into multiple functions. A CHF, for example, typically has two components: one that
processes the input data updating the memory state and a second that finalizes the hash
calculation generating the hash digest. In this section, we evaluate if TropyHunter can
identify algorithms as a whole. To generate a ground truth, we identified all PRNG and
CHF algorithms in the source code of all programs in our evaluation set. We additionally
determined the algorithms of the identified functions of the Other Cryptography and False
Positives category. Since these algorithms are usually divided into different functions,
our result may group multiple functions together into one algorithm. Note that, we omit
functions from the Other Cryptography category if they are detected as part of a PRNG or
CHF algorithm. For example, TropyHunter identifies the function php session gc in PHP
because a PRNG is used to generate a session ID. Since we already counted the PRNG
algorithm, we omit this function from the evaluation on the algorithm level. We consider
an algorithm as correctly classified if TropyHunter finds and correctly classifies at least
one function of that algorithm. Table 3.4 depicts algorithms identified by TropyHunter.

The results show that TropyHunter can reliably identify CHF algorithms within binary
executables. For example, for libtomcrypt, we can detect and classify 15 out of 16 algo-
rithms in the library. TropyHunter has the lowest detection rate for libwolfssl, where two
out of five algorithms were missed.

For PRNGs, the results are slightly less reliable. In the best case (libtomcrypt), five
out of five PRNGs were found and classified correctly. In the worst case (libcrypto), one
out of four was found and correctly classified. We investigated potential causes for the
discrepancy between detecting PRNG algorithms and CHF algorithms: The majority of
failures can be traced back to implementations using functions pointers. For example, the
PRNG implementation drbg ctr generate in libgcrypt uses a symmetric block cipher to
generate random data. The used block cipher function is registered during the initialization
of the PRNG, and the memory state stores the corresponding encryption function as
a function pointer. Since the function pointer was never seen during our analysis, the
emulation crashes when it is used. As function pointers are a hard problem in static
analysis [112], we will further discuss possible ways to tackle this issue in Section 3.6.
For applications other than cryptographic libraries, the results are much better (see lower
part of Table 3.4). For example, the recall and precision for Lighttpd, libaprutil, and libapr
are 1.00. These results further substantiate our observation that cryptographic shared
libraries are a stress test for TropyHunter.

As described in Section 3.2.2.1, we created an interaction model of CHFs based on com-
monly used algorithms such as MD5, SHA-1, or SHA-256. During our analysis, we found
rarely used CHFs such as SM3 [138], MDC2 [22], or HAVAL [166] that were never studied
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Table 3.4: Results for the classification accuracy of TropyHunter for PRNGs and CHFs
on the algorithm level for the six cryptographic shared libraries and six other
programs. #Alg. describes the number of algorithms that exist in the target
program, #Found indicates the number of found PRNG or CHF algorithms, or
the algorithms for the Other Cryptography or False Positives category. #Class.
depicts the number of algorithms correctly classified by TropyHunter as PRNG
or CHF. Recall, Precision, and F1 Score depict the corresponding accuracy
values.

CHFs PRNGs
Other
Crypto

FPs

Program #Alg. #Found #Class. #Alg. #Found #Class. #Found #Found Recall Precision F1 Score
libwolfssl 5 3 3 2 2 2 1 0 0.71 0.83 0.77
libgcrypt 13 12 12 6 2 0 10 1 0.63 0.52 0.57
libcrypto 12 12 12 4 1 1 13 0 0.81 0.50 0.62
libnettle 9 8 8 3 2 2 8 0 0.83 0.56 0.67
libsodium 3 3 3 3 3 2 2 0 0.83 0.71 0.77
libtomcrypt 16 15 15 5 5 5 5 2 0.95 0.74 0.83

PHP 14 11 11 4 3 2 0 1 0.72 0.93 0.81
Ruby 0 0 0 2 2 1 0 0 0.5 1.00 0.67
Lighttpd 2 2 2 1 1 1 0 0 1.00 1.00 1.00
PostgreSQL 3 2 2 2 2 1 0 0 0.60 1.00 0.75
libaprutil 3 3 3 0 0 0 0 0 1.00 1.00 1.00
libapr 1 1 1 1 1 1 0 0 1.00 1.00 1.00

Sum 81 72 72 33 24 18 39 4 0.79 0.68 0.73

by us during the creation of the interaction model. This demonstrates that TropyHunter
generically identifies PRNGs and CHFs without relying on algorithm-specific artifacts.

3.5.2 Closed-Source Applications

To demonstrate that TropyHunter is applicable for closed-source applications, we ana-
lyzed multiple programs only available as binary executables. We evaluated against spotify
1.1.5.153.gf614956d, TeamViewer 14.3.4730, and Beyond Compare 4.2.10.23938. Further-
more, to demonstrate that TropyHunter is OS agnostic, we evaluated against the Pluggable
Authentication Module binary from a POSIX-compatible non-Linux OS, namely QNX 7.0.
Table 3.5 depicts the results of our evaluation. As can be seen, the analyses provide a
practical starting point for an analyst for each application. For example, the analysis of
spotify reduced the more than 647,000 functions to only 30 candidates (26 CHFs and 4
PRNGs). The analysis of the pam qnx shared library, which is part of the authentication
module of the QNX OS, pinpointed six candidate functions with five of them classified as
CHFs. Luckily, the debug symbols in qnx pam were not removed, allowing us to verify the
results. The five classified CHFs are indeed CHFs (SHA-1, SHA-224, SHA-256, SHA-384,
and SHA-512). TropyHunter could not classify the remaining function as a PRNG, since
the function just returns a fixed four bytes random integer value in the return register.
Our classification logic expects an arbitrary output size for a PRNG and a fixed output
size in an argument pointer for a CHF. Thus, this function was found but not classified.
Note that we did not see any additional CHFs or PRNGs in the symbol names, indicating
that all CHF and PRNG functions in qnx pam were identified.
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Table 3.5: Results of TropyHunter’s analysis of closed-source applications.
#Functions Total indicates the total number of functions within the program
that are identified by IDA Pro [78]. #Found describes the number of PRNGs
or CHFs which were identified by TropyHunter before classification. #CHFs
depicts the number of identified functions classified as CHF, whereas #PRNGs
is the number of functions classified as PRNG.

Classifications

Program
Time

(hh:mm:ss)
#Functions

Total
#Found #CHFs #PRNGs

spotify 65:36:05 647,035 43 26 4
TeamViewer 71:24:31 89,984 115 81 22
bcompare 40:35:31 33,180 46 35 3
pam qnx 1:52:30 194 6 5 0

Overall, the results show that TropyHunter is a valuable tool for an analyst starting the
reverse engineering process: after running TropyHunter, the analysis can focus on the few
remaining pertinent functions.

3.5.3 Ablation Study for Emulation Strategies

To show the impact of the proposed memory initialization (Section 3.3.3.2) and fuzzing
strategies (Section 3.3.3.4), we assess each of them independently on all open-source pro-
grams of our evaluation set. To measure the memory initialization strategies, we deacti-
vated the fuzzing mechanism of TropyHunter and only activated one memory initialization
strategy at a time (e.g., Zero or Random8Plus). Furthermore, we extracted the functions
that were only identified by the corresponding memory initialization strategy and not
by the others. To evaluate the fuzzing strategies, we activated all memory initialization
strategies and only used one of our fuzzing mechanisms (either the Emulation Crashed or
Output Destinations Dismissed strategy). Again, we also extracted the functions that were
identified by the corresponding fuzzing mechanism and not the other. Table 3.6 depicts
the results. The evaluation shows that no memory initialization strategy alone can find all
algorithm functions. For example in the case of libgcrypt, the largest number of functions
are identified with the Random memory initialization strategy (54 functions), whereas the
Zero strategy finds 40 functions. However, these 40 functions contain eight functions that
were not found by any other memory initialization strategy and thus contributed directly
to the overall analysis result. But even so, the memory initialization strategies alone do
not find all 77 functions. For the fuzzing strategies, we observe a similar behavior. The
fuzzing mechanism used if the Emulation Crashed was able to raise the identification to
73 functions. These 73 functions contain five functions that are not found by the fuzzing
mechanism for Output Destinations Dismissed. However, the fuzzing mechanisms alone
are still not able to identify all 77 functions. Overall, the results show an overlap of identi-
fied functions, however, no memory initialization or fuzzing strategy alone is able to detect
all functions. Therefore, each strategy contributes to the effectiveness of TropyHunter and
a combination of them is necessary to deliver the best results.
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Table 3.6: Results of measuring the impact of the memory initialization and fuzzing strate-
gies. #All indicates the number of identified functions if all strategies are used.
#Zero, #Random, #Random8Plus, #Random4Plus, and #RandomPlus de-
pict the number of identified functions if only the corresponding memory ini-
tialization strategy is used. The numbers in parentheses represent the number
of functions that are only identified by the corresponding memory initializa-
tion strategy. #Emulation Crashed and #Output Destinations Dismissed give
the number of identified functions if only the corresponding fuzzing strategy
is activated (as well as all memory initialization strategies). The numbers in
parentheses represent the functions that are only identified by the corresponding
fuzzing strategy.
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libwolfssl 10 6 (0) 7 (0) 6 (0) 6 (0) 7 (0) 7 (0) 10 (3)
libgcrypt 77 40 (8) 54 (0) 52 (5) 50 (0) 53 (0) 73 (5) 71 (3)
libcrypto 103 52 (4) 81 (0) 90 (10) 78 (0) 82 (1) 98 (0) 102 (4)
libnettle 34 18 (1) 26 (0) 28 (2) 26 (0) 26 (0) 31 (1) 30 (0)
libsodium 15 11 (0) 14 (0) 14 (0) 14 (0) 14 (0) 15 (1) 14 (0)
libtomcrypt 55 34 (8) 23 (4) 39 (7) 20 (1) 19 (0) 51 (1) 54 (4)

PHP 35 29 (1) 23 (0) 30 (2) 24 (0) 24 (0) 32 (0) 35 (3)
Ruby 2 1 (0) 2 (1) 1 (0) 1 (0) 1 (0) 2 (0) 2 (0)
Lighttpd 4 4 (0) 4 (0) 4 (0) 4 (0) 4 (0) 4 (0) 4 (0)
PostgreSQL 11 11 (0) 11 (0) 11 (0) 11 (0) 11 (0) 11 (0) 11 (0)
libaprutil 4 4 (0) 4 (0) 4 (0) 4 (0) 4 (0) 4 (0) 4 (0)
libapr 2 2 (0) 2 (0) 2 (0) 2 (0) 2 (0) 2 (0) 2 (0)

3.5.4 Runtime Performance

As illustrated in Tables 3.3 and 3.5, TropyHunter exhibits a long runtime to analyze large
applications. This is because the research prototype is written in Python and not optimized
for performance. Although the emulation of TropyHunter is done by Unicorn [154] and
therefore written in a system programming language, multiple callbacks into TropyHunter
make a transition back to Python (e.g., a callback executed after emulating each instruction
because of unsupported instructions by Unicorn). We like to stress that this is merely an
engineering problem based on the chosen programming language. Finally, it is worth
mentioning that the analysis only needs to be performed once.

3.6 Discussion

In the context of this chapter, we assume that PRNGs and CHFs create a certain level
of randomness that can pass random number generator tests. Developers, however, can
implement self-designed PRNG or CHF algorithms for their application regardless of the
quality of the generated data. These functions might not pass the random number gen-
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erator tests and hence would be discarded by TropyHunter. Since an analyst might be
interested in such functions, TropyHunter can be configured to disable the random num-
ber generator tests. Additionally, we use random number generator tests to determine
the randomness quality of the generated data. However, even if the generated data passes
these tests, the identified functions are not always suitable for cryptographic purposes.
For example, during our evaluation, TropyHunter found the CRC32 checksum algorithm,
which passed random number generator tests. While the generated data has sufficient
randomness to pass these tests, properties of the detected algorithms (e.g., linearity) are
not considered.

The biggest limitation we encountered during our evaluation were implementations using
function pointers. Primarily cryptographic shared libraries use function pointers to provide
a modular architecture. For example, the NIST recommendation SP800-90A [15] gives a
design for a PRNG based on CHFs. However, CHFs are merely a building block in the
design, and a specific implementation can be replaced by a newer one (e.g., SHA-256 with
SHA-3). To support this modular architecture, some implementations in cryptographic
shared libraries expect the developer to pass a pointer to a CHF as an argument to the
PRNG initialization routine. The pointer is then stored in the PRNG memory state and
used when the PRNG algorithm function is executed. Since TropyHunter does not know a
valid target address for this function pointer, usage of it results in a crashed emulation. One
way to tackle this issue is to statically extract all addresses of functions that are written to
memory locations in the application. We can then systematically replace the target of an
indirect call crashing the emulation by replacing it with the extracted function addresses.
However, this prohibitively increases the analysis time of TropyHunter. Since we only
encountered eight implementations using function pointers (and only in cryptographic
shared libraries), we resorted to have them as a limitation.

A similar problem occurs for applications written in C++. Internally, C++ classes
use tables of function pointers to execute virtual functions. Each object using virtual
functions hold a pointer to the corresponding function table. As a result, to analyze
C++ applications techniques to extract these function tables have to be developed and
integrated into the same probing approach that could be used for function pointers.

Besides this, TropyHunter also has some minor limitations as well. First, due to the
probabilistic nature of the presented analysis approach, the results of an analysis may differ
when performed multiple times on the same application. This stems from the fact that
depending on the used memory initialization strategy (e.g., Random8Plus), the memory is
filled with random data. Hence, in theory, a field in a memory state might be filled with an
incompatible value that results in an unsuccessful emulation or insufficient randomness in
the output. However, the evaluation of our memory initialization and fuzzing strategies in
Section 3.5.3 shows an overlap in the identified functions between the different strategies.
Hence, minimizing the risk of missing a function due to a disadvantageous random value.
Furthermore, we did not encounter a missed function during our evaluation because of
this probabilistic behavior and thus deemed it acceptable.

Second, we assume the algorithm functions pass the generated data directly to the
caller functions. Due to this assumption, we expect data to be returned either via a given
pointer to memory or directly in the return register. Since a developer can implement
the data flow freely (e.g., writing the generated data into a file and reading this file from
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the caller function), we might miss these peculiar implementations. Note that, since we
only encountered the assumed direct data flow between the functions in our evaluated
open-source applications, we narrowed down our scope.

Third, TropyHunter uses simple fuzzing for a short time to generate a fine-grained
memory layout of the state used by the algorithm. Still, common fuzzing roadblocks
such as checking for magic numbers or checksums cannot be bypassed with such a simple
technique. To tackle this problem, a more sophisticated fuzzing approach (e.g., [14,31,124,
162]) could be used. However, during our evaluation, we did not encounter any PRNG or
CHF implementation using such constructs.

Finally, the distinction between PRNG and CHF is not always clear in practice. Our
classification heuristic tries to distinguish between them by assuming that PRNG imple-
mentations create data of arbitrary size and CHF implementations create data of a fixed
size. However, there are certain cases where this assumption does not hold. For example,
the SHA-3 algorithm is based on an approach called sponge construction [53], which allows
it to generate output of arbitrary size. This design allows SHA-3 to be used as PRNG.
In these edge cases, accurately classifying an algorithm as PRNG or CHF is not always
possible. Similarly, TropyHunter usually detects and classifies stream ciphers as PRNGs.
This is because stream ciphers are basically the same as cryptographically secure PRNGs.
Most stream ciphers generate a stream of random bytes to encrypt the plaintext by just
xor combining them [84].

3.7 Related Work

In recent years a relevant stream of work has explored identifying encryption algorithms
in executable binaries. For example, K-Hunt [101] finds encryption algorithms in binary
applications and identifies their insecurity. It utilizes dynamic analysis by using Pin [104]
to record execution traces of the target application. However, executing the application
sidesteps the problem of finding the correct memory layout, which TropyHunter tack-
les. K-Hunt inherits typical issues of dynamic analysis, such as dependency on code
coverage. Furthermore, K-Hunt assumes that the analyst has test cases that execute
the application such that the encryption ciphers are used. However, creating such test
cases for closed-source applications (and especially shared libraries) is a considerable ef-
fort. Gröbert et al. [73] also presented a dynamic approach to find symmetric encryption
algorithms in binaries. Their approach uses the execution trace of an application and
heuristics to narrow down the search of the ciphers, and then reconstructs the correspond-
ing memory. Subsequently, patterns are used and compared to a database to identify the
exact algorithm. However, a small deviation from the reference implementation of the en-
cryption algorithms can lead to false-negative results. Similarly, Xu et al. [160] presented
CryptoHunt, a dynamic approach working on execution traces to search cryptographic
functions in (obfuscated) binaries. The key insight is to compare formulas created on
traces of the loop in a cryptographic function with the ones of a reference implementation.

Lestringant et al. [99] proposed a static approach based on data-flow graph-isomorphism
to find encryption ciphers in binaries. To cope with different implementations of the same
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algorithm, the created data-flow graph is normalized before it is used. However, it relies on
previously generated signatures and thus is only able to find previously known algorithms.

In a different context, X-Force [123] tries to execute malware binaries. The goal is to
bypass anti-debugging checks and identifying hidden functionalities without having any
input available. This is done by forcing the execution of different paths when it reaches
a check and allocating accessed memory locations on the fly to prevent crashes. Simi-
larly, Godefroid presented MicroX [66], a virtual machine capable of executing specific
code parts (e.g., functions) of x86 binary code without having any input data. MicroX
automatically allocates accessed memory locations on the fly. To provide input values
it takes different strategies such as filling memory locations with zero, filling them with
random data, or use a user-provided method. Gao et al. [62] presented a semantic-learning
and emulation-based approach to search vulnerabilities in binary applications. To emu-
late functions, they identify the used arguments and initialize them with random integer
values.

3.8 Conclusion and Future Work

In this chapter, we presented the design and implementation of TropyHunter, an analysis
approach to accurately find PRNGs and CHFs in binary executables in an automated
way. We demonstrated that PRNGs and CHFs follow a similar interaction model and
can thus be detected generically by searching for this behavior. Our evaluation showed
that emulation of PRNGs and CHFs without any user interaction and knowledge of the
expected memory layout is possible. Furthermore, we demonstrated on a diverse set of
applications that our proposed approach is viable and showed that TropyHunter can be
beneficial to analysts.

Providing function pointer support for TropyHunter is an interesting future advance-
ment. Especially support for C++ applications, which rely heavily on function pointers.
Since C++ is the programming language of choice when developing large and complex
software relying on performance [145], supporting C++ allows the analysis to work on
a broader set of programs. As a first step towards this advancement, we focus on C++
class-hierarchy reconstruction in binary applications in our next chapter to provide an
analyst or analysis tool with important information about function pointers in C++ pro-
grams. Furthermore, extending TropyHunter to other architectures such as ARM could
open interesting research opportunities. With such an extension, we could evaluate the
security of PRNG and CHF implementations in embedded systems such as Programmable
Logic Controllers (PLCs) [2] or IoT devices [35]. As embedded systems suffer from bad
PRNG implementations [3, 36], analyzing them could uncover severe vulnerabilities.
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Chapter 4
Uncovering Class Hierarchies in C++
Binaries

Analyzing C++ programs on the binary level is a challenging problem since high-level
concepts used in object-oriented programming are often translated into binary code using
function pointers. Such code contains more complexity than, e.g., traditional procedural
code, and as a result, it is more difficult to understand. As the evaluation in Chapter 3 has
shown, analyzing code using function pointers statically poses a problem for the analysis
process. Automated tools that do not take function pointers into account might miss
important conclusions because of incomplete results. An analyst manually analyzing a
program using function pointers faces additional hurdles because of the indirect branches
or even hits a dead end because of them. Furthermore, since the targets of these indirect
branches are resolved only at runtime, they can be influenced by an attacker for introducing
new malicious control flows by taking advantage of software vulnerabilities.

C++, the choice for implementing a huge industrial software base [145], contains a
plethora of indirect branches. Since virtual objects support several methods from different
classes in their hierarchy, most compilers implement dynamic dispatching of virtual calls
using indirect branches. In practice, C++ programs are thus full of indirect calls, and most
of these can be influenced not just by overflow-type vulnerabilities, but also by temporal
bugs (i.e., use-after-free vulnerabilities). For instance, according to a recent study [164],
in most libraries linked to Firefox, almost 7% of the existing call instructions are indirect
calls, and about 40% of these indirect calls are virtual calls. This abundance of indirect
calls makes analyzing C++ binaries essential but also significantly hard.

Indirect control-flow transfers rank among the greatest challenges for even the most basic
analysis steps, such as the recovery of the control-flow graph (CFG) [9, 139]. Resolving
the targets of indirect calls and jumps in a binary is difficult. At the binary level, we
have no way to learn class-hierarchy information in the program directly. While we know
that every virtual function call indexes a virtual function table (so called vtable), we
neither know the vtables’ exact locations, nor their relationships to each other. Reverse
engineering such code from a given binary executable is therefore a very challenging task
in practice.
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Albeit challenging, vtable reconstruction directly from binaries can be useful in several
domains. First, the class hierarchy helps the analysis of C++ legacy or closed-source
code (e.g., by providing information about indirect branch targets). Second, since ex-
ploits commonly abuse vtables, security analysts can explore incidents affecting C++
applications when source code is not available. Finally, many defenses that harden C++
binaries can leverage the class-hierarchy information for delivering sound protection of
programs in the absence of source code. Current state-of-the-art binary-only protection
approaches use weaker characteristics typical for C++ applications to protect virtual call-
sites, such as allowing all existing classes at a virtual callsite [127], or enforcing that the
pointer to the vtable resides in read-only memory [63]. This usage of weaker characteris-
tics stems from a lack of precision and scalability of current class-hierarchy reconstruction
approaches [59,83,85].

Therefore, if we can successfully recover the class hierarchy from a binary, we can
improve state-of-the-art binary-level defenses that can benefit from such information. For
instance, we can ensure that virtual function calls conform to the class hierarchy, and
therefore provide strong guarantees against attempts to hijack the control flow of the
program (so called vtable-hijacking attacks). Another example is to ensure that objects
of different type classes are allocated from different memory pools to prevent the reuse
of memory in a type-unsafe manner—a common source of use-after-free exploits. For
both these example applications, extracting the class hierarchy of the binary program
is essential. Notice that this is only a set of mitigations that rely on C++ semantics,
although an important one, given that prior work argued that C++ binary-level defenses
have trouble stopping control-flow hijacking attacks due to the lack of class-hierarchy
information [135].

4.1 Introduction

In this chapter, we focus on the problem of reconstructing class relations directly from
binaries. Our approach does not rely on embedded RTTI information (metadata emitted
by the compiler for resolving class information at runtime, often stripped), does not rely
on particular compiler flags, and works on industrial software. Since reconstructing class
relations is a hard problem by itself and information concerning the direction of the relation
is not available in binaries, we only focus on reconstructing class hierarchies as a set and
ignore the direction of inheritance. Our system, Marx , can accurately reconstruct 93.2%
of the hierarchies for Node.js and 88.4% of the hierarchies for MySQL Server. Overall, we
have successfully applied Marx to more than 80 MiB of binary code to demonstrate the
practicality of our implementation.

Marx is a valuable framework for the reverse engineering community, however, as we
have already mentioned, security applications can leverage class relations for protecting
binaries. The information provided by the analysis allows us to implement stronger binary-
level defenses using type-based invariants. To showcase the practicality of Marx , we
develop two binary-level defenses on top of it. The first application is a vtable protection
system to prevent virtual calls to methods that do not belong to the class hierarchy and
mitigate vtable-hijacking attacks. The second application is a custom heap allocator to
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support type-safe object reuse by placing newly allocated objects in memory pools based
on their type.

Both security applications use the class hierarchy recovered from a binary. We demon-
strate that, even when the extracted class hierarchy is imperfect, our defenses can improve
security at reasonable performance and without breaking programs. To compensate for
the imprecision of the analysis, our vtable protection solution treats invariant violations
as anomalies and triggers more heavyweight checks on a slow path (trading off on perfor-
mance). Our type-safe object reuse solution, in turn, can gracefully tolerate type-to-pool
mapping mismatches (trading off on security). In short, we show that it is possible to build
fully conservative binary-level defense solutions on top of imprecise information, exposing
new interesting and previously unexplored tradeoffs.

Contributions In summary, the contributions of this chapter are as follows:

1. We design and implement Marx , a framework for reconstructing class hierarchies
directly from binary executables that do not embed RTTI information and are pro-
duced with arbitrary compiler flags.

2. We evaluate Marx with more than 80 MiB of binary code, and we show that vta-
bles can be reconstructed from binaries with high precision. As an example, Marx
can accurately reconstruct 93.2% of the hierarchies for Node.js and 88.4% of the
hierarchies for MySQL Server.

3. We develop two security applications for binaries based on class hierarchies exported
by Marx : vtable protection and type-safe object reuse. Our applications show it is
possible to tolerate imprecise information when building sound binary-level defense
solutions by trading off on performance and security.

The prototype implementation of Marx and the data we used for the evaluation are
available under an open-source license at https://github.com/RUB-SysSec/Marx.

Outline This chapter is structured in the following way: Section 4.2 explains our analysis
approach to reconstruct class hierarchies. The implementation of Marx is described in
Section 4.3. Two security applications build atop of Marx ’s analysis results are given in
Section 4.4. Section 4.5 presents the evaluation of Marx as well as the two developed
security applications. We then discuss our approach in Section 4.6 and give an overview of
related work in Section 4.7. Section 4.8 ends this chapter with a conclusion and discussion
of possible future work topics.

The chapter is based on collaborated work with Moritz Contag, Victor van der Veen,
Chris Ouwehand, Thorsten Holz, Herbert Bos, Elias Athanasopoulos, and Cristiano Giuf-
frida, which was published at the Network and Distributed System Security Symposium
(NDSS) 2017 [120].
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-0x10 Offset-to-Top

-0x08 &RTTI

 0x00 &Function-Entry1

 0x08 &Function-Entry2

 0x10 &Function-Entry3

vtblptr

Vtable

Figure 4.1: Structure of an Itanium C++ ABI vtable. The vtable pointer referenced in
the code points to offset 0, where the table of function pointers starts. The
two metadata fields (RTTI and Offset-to-Top) precede said table.

4.2 Approach

Given a binary executable, we aim at extracting the C++ class hierarchies as accurately
as possible. To this end, we extract distinct properties that result from the way a C++
compiler implements the high-level concepts on the binary level as explained in Section 2.2.
In the following, we describe the design of our approach that is implemented in a tool called
Marx .
Generally speaking, our analysis is divided into two steps:

1. Vtable Extraction. Distinct patterns that are typical for vtables in the code are
searched and information about the vtables is extracted.

2. Static Analysis. Given that these heuristics might lead to an overestimation, a static
analysis of the code is conducted which searches for usages of the vtables found in
the previous step.

In the following, we focus on the Itanium C++ ABI [60]. However, we stress that the
presented methodology is applicable to other ABIs as well, such as the ARM [12] or the
Microsoft C++ ABI [72].

4.2.1 Vtable Extraction

Virtual function tables in a binary are the key element to our analysis. By extracting
usages of vtables, one easily finds points in the program where objects are either created
(constructors) or destroyed (destructors). This, in turn, yields valuable information about
the relation of different classes. Hence, one can view vtables as roughly analogous to a
certain class and relation of vtables as corresponding to certain class hierarchies.

Our analysis applies multiple heuristics in order to locate vtables in a binary (H-1 to
H-6), as we discuss in the following. A rough, albeit simple, estimate can be used to
restrict the search space to specific sections: As vtables are fully specified at compile time,
they can be placed in read-only sections (heuristic H-1). Therefore, only those sections
that typically hold vtables, such as .rodata, .data.rel.ro, and .data.rel.ro.local,
are analyzed.

Figure 4.1 shows the typical structure of an Itanium C++ ABI vtable. A vtable consists
of three different parts: the Offset-to-Top field, the RTTI pointer, and multiple function
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entries. Each type has different properties which can be used to distinguish between them.
Also, their order is fixed, which makes it possible to search for a series of consecutive
patterns in a memory range, e.g., a specific section.

As seen in the figure, the vtblptr references the beginning of the function entries. Usually,
this reference will be used in a constructor or destructor. However, we note that the other
fields are usually not referenced at all (heuristic H-2).

Offset-to-Top is used to implement multiple inheritance for objects and encodes the off-
set from the sub-object to the base object. It is a mandatory field and always contains 0 if
multiple inheritance is unused. Our approach checks the sanity of this entry by only allow-
ing values in the range from -0xFFFFFF to 0xFFFFFF as proposed by Prakash et al. [127].
In addition, the value cannot be a relocation entry. These checks constitute heuristic H-3.

RTTI holds a pointer to further type information for the class. Since this field is
optional, the entry is either a pointer or 0. If the entry is, in fact, a pointer to data, it
has to point to non-executable memory (heuristic H-4). Since the vtable can be part of a
shared library, this entry can also be a relocation entry.

Function entries hold a pointer to the virtual functions the class provides. Hence, an
entry either points to the .text, .plt, or the .extern section of the binary, or it is a
relocation entry. One of these properties has to be satisfied such that the analysis deems
the function pointer to be valid (heuristic H-5).

In rare cases, the compiler sets the first few function entries of the vtable to 0. This
can happen for multiple inheritance constructs inheriting from abstract classes. To cope
with these edge cases, our approach allows the first two function entries of the vtable to
be 0. This number was empirically found to be sufficient (relaxing heuristic H-6).

Finally, we can determine the beginning of a vtable by searching three consecutive words
in memory that fulfill the properties outlined above. Further, the length of the vtable can
be estimated by checking the subsequent function entries for validity.

To sum up, the heuristics we employ are:

H-1 Vtables have to lie in read-only sections.

H-2 In a candidate vtable, only the beginning of the function entries is referenced from
the code.

H-3 Offset-to-Top lies within a well-defined range and it is no relocation entry.

H-4 RTTI either points into a data section or is 0.

H-5 A function entry points into a code section or is a relocation entry.

H-6 (relaxing) The first two function entries may be 0.

Note that the heuristics to find these patterns can lead to an overestimation of extracted
vtables. Nevertheless, this does not impact the subsequent analysis notably since only
existing vtables are referenced in the code (cf. heuristic H-2). We note that only in rare
cases an overestimated vtable can result in an overestimated hierarchy. On the other
hand, only an underestimation of vtables would lower the precision of the analysis, which
is unlikely for the presented approach.
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0x00: vtblptrC1
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0x10: vtblptrC2
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call Constructor A

write vtblptrC1

Constructor C
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write vtblptrC2

return

write vtblptrA
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Figure 4.2: Order of vtblptr overwrites during the creation of an object of class C. The
control flow of the execution of Constructor C is depicted as dotted lines.

4.2.2 Static Analysis

Now that we obtained a possibly overestimated set of vtable candidates, the second phase
of our approach statically analyzes their relation based on indicators found in the binary
code. Eventually, it yields distinct sets of vtables that are part of a class hierarchy. In the
following, we discuss the various indicators the approach uses.

4.2.2.1 Overwrite Analysis

In Section 2.2.3, we discussed how during object creation, the constructor writes the vtblptr
into the object. Further, when class C inherits from class A, as depicted in Figure 2.3 in
Chapter 2, the constructor of class A is executed before the constructor of class C (top-
down approach). This ensures that the inherited attributes of class A are initialized before
the constructor of class C accesses them. Consequently, the vtblptr of the base class A is
written into the new objects before the derived constructor writes the vtblptr of class C as
shown in Figure 4.2. This also holds for multiple inheritance. In the given example, class
C also inherits from class B. Hence, the constructor of class B is also executed before the
constructor of class C. In this case, however, the vtblptr of class B is overwritten by the
vtblptr to the sub-vtable of class C.

In contrast, during object deletion, the destructor of class C is executed before the
destructor of class A, i.e., invocation follows a bottom-up approach. Therefore, the vtblptr
of class C is overwritten by the vtblptr of class A. This also holds in the case of multiple
inheritance for the sub-vtable of class C and vtblptr of class B, analogously. We can leverage
this and detect the dependency of two classes by tracking if one vtblptr in an object is
overwritten by another vtblptr . Remember that classes are roughly analogous to their
vtable for our approach.

Naturally, this also means that we have to track the creation of a potential object
by monitoring the new operators of the memory allocator. By correctly identifying con-
structors and destructors, our approach would also be able to make a statement about the
direction of the inheritance, i.e., detect which class is the base and which the deriving class.
In its current implementation, however, our approach reconstructs the class hierarchy as
a plain set.

52



4.2 Approach

Due to compiler optimizations, constructors are often inlined next to the memory al-
location of the object in the same function. The same concept is applied to destructors,
analogously. While our approach does not identify constructors and destructors directly,
it detects the characteristic pattern of vtblptr overwrites. As a result, we are able to
detect overwrites for which a concrete classification as constructor or destructor is more
involved. More precisely, our overwrite analysis is performed on statically calculated paths
through multiple functions, as discussed in Section 4.3. Thus, we avoid having problems
with function inlining as opposed to other approaches such as the one presented by Jin et
al. [83].

4.2.2.2 Vtable Function Entries

Classes in the same hierarchy share attributes and a subset of virtual functions. Also, a
class that inherits virtual functions from another class does not have to overwrite it. As
a result, the vtables of both classes, base and derived, may contain multiple entries that
point to the same function as in the other classes’ vtable. In order to work in polymorphic
constructs, this function entry has to be at the same position in the vtables.

Hence, we can employ a heuristic that checks if multiple vtables share the same function
entry at the same position. If they do, we consider them as related. Obviously, specific
entries like a 0 entry or the pure virtual function have to be excluded from this heuristic.
Note that, similar to the overwrite analysis in its current form, no direction information is
included. Naturally, if the compiler places the same function entry at the same position in
unrelated vtables due to optimization passes, our analysis would find them to be related.
This would lead to an overestimation of the found class hierarchy. However, the evaluation
results in Section 4.5.1 show that this case can be neglected in practice.

4.2.2.3 Inter-Procedural Data Flow

We perform our analysis on paths through multiple functions. Even if analysis within
a function is well defined, special attention has to be paid to the point where function
boundaries are traversed.

Forward Edge Virtual functions are usually only called via an indirect call instruction.
As these are dispatched dynamically based on a concrete object, the list of potential call
targets is not easily retrieved statically. As the overwrite analysis analyzes paths through
multiple functions, indirect callsites pose a roadblock and may prevent the analysis from
following the call target. Consequently, vtable relations that are established beyond this
point will be missed by the analysis. We say it lacks context, as no potential object at the
callsite is known with which the callsite could be resolved.

In order to tackle this problem, the static analysis tries to resolve the indirect call
instruction with the help of the context (essential a memory state) it built up on the
current path. If the argument of an indirect call instruction is known, i.e., it dereferences
a known vtblptr , we resolve the target function and continue the analysis in the newly
discovered function on the path while keeping the current context.
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Figure 4.3: A simplified version of the function GetSortComparisonObject from the
FileZilla FTP client. Depending on the given argument, it creates a new
object of different classes and returns it. Without considering the backward
edge, no statement about the classes referenced in this function can be made.

As an additional side effect of resolving the branch targets at a vcall in the current anal-
ysis run, we know which vtable is used for it. Since in polymorphic constructs only classes
within the same hierarchy are allowed, a vcall can only be used by objects of dependent
classes. Hence, if during the analysis the same vcall is used by objects containing different
vtables, these vtables are related (i.e., the objects are from the same class hierarchy).
However, no information about the direction of the inheritance of the classes is obtained.

Backward Edge In addition to passing known context on to the beginning of a more
deeply nested function, the analysis also has to take return values of a callee back to its
caller into account. Since different paths through the callee can result in multiple different
return values, we generalize them into a set of return values, which is effectively the union
of the individual return values on each path. Then, if the return value is used in a point
where more context is required, such as a vcall, the information provided all possible
return values can be used to, e.g., resolve an indirect callsite.

Consider the example given in Figure 4.3, which was encountered in the FileZilla FTP
client. This function returns a different object depending on the given argument. The
classes that are used to create the object (namely, X, Y, and Z) are part of the same
hierarchy. Without tracking the possible return values of this function into a vcall of the
caller, it is not possible to find the relation of these classes based on information of the
forward edge alone.

4.2.2.4 Inter-Modular Data Flow

Applications are commonly divided into multiple modules (also known as libraries), where
each module performs a specific task. On Linux, these modules are implemented using
shared objects, which already include the notion that common functionality can be reused
by different applications. Obviously, modules can depend on each other. Specifically, in
C++, it is possible to interact with classes exported by a shared object. Such relations
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Figure 4.4: A class hierarchy that is connected via a shared library. Classes G and J both
inherit from classes belonging to the same hierarchy in a different module.
This fact is only observable when taking module boundaries into account.

would be hidden from our analysis when analyzing single modules only due to missing
context. To counter this, we support inter-modular analyses.

Consider the example depicted in Figure 4.4. The application itself contains two class
hierarchies that appear to be unrelated when looking at the main module. However,
when taking the application’s shared library into account, it becomes apparent that the
two hierarchies are, indeed, related. Both hierarchies in the main module derive from a
class of the very same hierarchy in the shared library. Isolated analysis of the individual
modules would not have yielded the same result.

Our approach analyzes shared libraries first and creates data flow summaries of the
return values and vtblptr overwrites in their respective modules. If a function in a shared
library is called during the analysis phase, the aforementioned summaries are added to the
current context accordingly. This way, we can also consider all class hierarchy connections
that are outside of the currently analyzed module.

4.3 Implementation

Based on the concepts presented in Section 4.2, we implemented an analysis framework
called Marx in C++ for Linux x86-64 binaries. Note that even though only Linux x86-64
binaries are supported as of now, the implementation can be easily extended to support
more architectures. This is supported by the fact that we use VEX-IR from the Valgrind
project [51] as our intermediate language.
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In the following, we describe the implementation of Marx , discuss challenges we encoun-
tered, and explain how we solved them.

The first step of our analysis, vtable extraction, is performed on an IDA Pro [78]
database using scripting facilities provided by IDAPython [79]. In addition to the candi-
date vtables identified via the heuristics H1 – H6 described in Section 4.2.1, the control-flow
graph (CFG) of all known functions is extracted as well, which is used in the subsequent
static analysis step.

The static analysis is mostly driven by a data-tracking engine which updates the context
collected upon a path through the binary, as discussed in Section 4.2.2. Said context is
used to track assignments of vtables to new objects and their overwrites in constructors
and destructors. In its current state, the engine implements basic 64-bit VEX instructions,
as this is already sufficient for our needs. The constructs we want to identify hardly involve
any complex calculations and with our focus on real-world applicability, we have to weigh
up Marx ’s precision against its performance.

4.3.1 Starting Points and Context Sensitivity

Marx starts its analysis for each function in the target program separately, i.e., each
function serves as starting point for at least one path. In order to obtain reasonable
results for a specific path, however, enough context has to be known in which the function
is executed. Otherwise, relations may be missed and the current traversal would not add
to the overall results of the analysis.

There are multiple ways to ensure that the analysis visits a function g with a reasonable
amount of context. For one, if g lies deeper within a path, it is reasonable that its caller
f already adds vital information to the context. By starting an analysis path at f , the
context added by it is available when arriving at g. If f constructs an object and g
overwrites its vtable, this information would be missed by analyzing g out of context.
This aspect is discussed further below.

On the other hand, it helps to consider the context a function inherently lies in. For
example, g may be a virtual function. This, in turn, means that it belongs to (at least)
one vtable. Hence, our analysis can be provided with some initial context: a thisptr exists
and the object’s vtblptr can be initialized to point to the vtable g lies in. For example, for
the x86-64 Itanium C++ ABI, any occurrence of [rdi + 0] is then known to resolve to
the current vtblptr .

This enables the analysis to handle operations on the object itself now that the target
object is known (vtblptr overwrites or vcalls). Further, if g belongs to multiple vtables, g
is analyzed in just as many contexts.

4.3.2 Path Creation and Convergence

The previous section already hinted on where possible paths through the binary start—at
any known function. However, care has to be taken that a path ends at a point where
all relations have been picked up by our analysis and no superfluous calculations are
performed by further following the path. A näıve approach would be to simply analyze
all possible paths at the given starting point. Yet, this leads to what is called the path
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explosion problem, as the number of paths easily exceeds a feasible amount for non-trivial
CFGs.

Marx decides which paths through a function are worth analyzing by following a heuris-
tic: on each basic block in the CFG, a predicate is run which decides whether the block is
considered interesting. We consider those blocks as interesting that contain one or more
of the following cases: (i) an indirect call (i.e., a possible vcall), (ii) a (direct) call to a new

operator, or (iii) an instruction operating on a vtblptr . With this heuristic, we attempt to
visit only those blocks that add to the overall context we are interested in.

We then compute paths that try to visit as many interesting basic blocks as possible
before reaching an exit block. In order to avoid a high computational complexity, a
threshold t is introduced. If a function contains more than t interesting basic blocks,
paths are generated that guarantee to visit at least one interesting block, but no attempts
are made to maximize this number. Empirically, we found a threshold of 20 interesting
basic blocks to be sufficient for our purposes. By trying to visit multiple interesting basic
blocks on a path within a function, overwrites in the very same function are more likely
to be detected. This is, for example, the case for inlined constructors: one block may
allocate memory, whereas another writes the object’s vtable.

Loops are only traversed once, i.e., paths are guaranteed to visit every basic block at
most once. Empirically, we did not encounter cases where loop unrolling would have
yielded better results in terms of object creation coverage.

Up to now, we only considered paths within a certain function. However, such a path
may contain calls to other functions. As already stated in the previous section, the call
depth of a path impacts the amount of context available to our analysis, which, in turn,
strongly impacts its results. Still, it is also an important factor to ensure that the analysis
terminates in a reasonable amount of time and, once again, illustrates how one has to weigh
up performance and accuracy. Empirically, we determined that a maximum call depth of
2 is sufficient for analyzing large real-world applications. Note that, depending on time
and resources available to an analyst, higher precision can be achieved by increasing this
number.

4.3.3 Virtual Callsite Identification

Even though the information collected in these steps is already helpful for an analyst, we
further refine the result and try to distinguish vcalls from other indirect call constructs
and only resolve target sets for the former. To detect a vcall, Marx searches for the virtual
function dispatch structure described in Section 2.2.4. As this structure applies to both
vcalls and other types of indirect calls (e.g., function pointers), we implemented two modes
to resolve the targets: conservative and non-conservative mode.

In conservative mode, an indirect call is only identified as vcall if the thisptr holds a
known object and a vtable is involved when computing the target address. This ensures
that the analysis has an exact state for the thisptr .

In non-conservative mode, an indirect call is considered to be a vcall simply if the vtable
is involved in the computation of the target address, i.e., we drop the requirement that
the thisptr has to be valid. Due to missing context during the analysis (i.e., call depth is
depleted), memory locations might not be identified as objects and therefore the thisptr
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check can fail. The non-conservative mode allows the analysis to resolve more vcalls since
requirements are relaxed. However, overestimation can lead to a higher false-positive rate.
The difference between both modes is further evaluated in Section 4.5.2.

4.4 Security Applications

Beyond applications in the area of reverse engineering, the results of the reconstructed
class hierarchies can also be used to significantly improve defenses that mitigate attacks
against C++ applications. In this section, we present two protection approaches build on
top of the analysis results provided by Marx : vtable protection and type-safe object reuse.
In practice, a C++ application can be analyzed by Marx before deployment and then set
up with the wanted protection.

4.4.1 VTable Protection for Binaries

VTable protection and, more generally, Control-Flow Integrity (CFI) [1] is a promising
way to stop advanced code-reuse attacks. In its ideal form, it limits an attacker by enforc-
ing that each indirect branch can only target valid—as intended by the programmer—code
paths. Unfortunately, practical CFI implementations suffer from precision loss when de-
termining the set of valid targets for each branch [44, 100, 135]. Naturally, this also goes
for CFI implementations that only protect virtual callsites [75]. Since it is even harder to
recover class hierarchies of an application without access to its source code, current state-
of-the-art binary-level defenses rely on weak characteristics to narrow down the set of call
targets [135]. Examples include looking only at argument count information [158], enforc-
ing that the vtblptr has to point to read-only memory [63], or allowing all existing vtables
at a vcall [127]. Despite drastically reducing the set of valid targets, these approaches may
still leave enough wiggle room for attackers to launch devastating attacks [44,100,135].

With the reconstructed class hierarchies, we can extend existing binary-level CFI solu-
tions with a vtable protection. Our goal is to increase CFI guarantees for C++ applications
by expanding state-of-the-art defenses with a mechanism to enforce correct class hierar-
chies for indirect branches. On that account, we extract the index into the vtable for each
identified vcall that is used to determine the function entry (as explained in Section 2.2.4).
With the help of the class hierarchy, we are then able to generate a function type for all
virtual functions at this position in the class hierarchy. In our example shown in Figure 2.3
in Chapter 2, functions A::funcA1, B::funcB1, and thunk to C::funcB1 would get the
same function type. Obviously, targeting A::funcA1 is not allowed at vcalls that are used
to branch to B::funcB1 and thunk to C::funcB1, indicating an overestimation of our
approach. However, the achieved precision of the call target set is a vast improvement
in comparison to existing binary-only vtable protection approaches and it remains to be
shown that this small overestimation can be exploited by an adversary [164].

Ideally, the vtable protection would merely insert a label check before each vcall that
verifies whether the target is of the same function type as the virtual callsite. Since our
static analysis is in certain cases not able to precisely assign a hierarchy to each vcall,
however, we apply two additional techniques:
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� Dynamic Analysis. To increase coverage, we run the binary in a controlled envi-
ronment with trusted input (e.g., by running unit tests). During dynamic analysis,
we inspect whether (i) executed indirect calls exhibit characteristics of a vcall, (ii)
hierarchies used at the same vcall are merged together, and (iii) detected vcalls are
in fact vcalls.

� Slow Path. Since our analysis may still miss key information about callsites (e.g.,
class hierarchy relations, leading to false positives), our extension can enter a slow
path when a function type check failed (treating the failure as an anomaly rather
than breaking the program). This slow path can be used to further investigate the
branch and to decide if it is allowed or not.

Moreover, as we are only interested in protecting C++ semantics, our static analysis
filters callsites that are definitely not vcalls.

We implemented a binary-only vtable protection on Linux for x86-64, using a similar
binary run-time instrumentation model as proposed by Van der Veen et al. [158]: we
use Dyninst [17] to move all functions to a protected shadow code region and prepend
them with a two-byte function type value, as obtained from our static analysis. Next,
we instrument each vcall with a short sequence of instructions. These instructions check
whether the target’s function type matches that of the vcall. If not, it enters our slow path,
which we implemented by using the PathArmor open source CFI framework [156]. Note
that we did not implement our own user-space JIT verifier, but rather let the kernel module
sleep for 10 ms whenever a new path is found. This is to carefully mimic the behavior of the
original PathArmor ’s implementation with an over-approximation of the average values
(Table 3 from the PathArmor paper [156]). We also remark that we adopted PathArmor ’s
context-sensitive CFI approach to demonstrate the feasibility of our protection strategy
similar to other efforts [103], but our system can incorporate any other solution to operate
heavyweight security checks on the slow path.

4.4.2 Type-safe Object Reuse

Typically a process reuses freed memory for new allocations blindly. Attackers can abuse
this mechanism by exploiting use-after-free vulnerabilities, where a malicious object is
carefully placed in memory that was previously occupied and (dangling) pointers still point
to it. Type-safe memory allocators such as Cling [6] aim at reducing this risk by preventing
memory chunks of different types from being allocated in the same location. Essentially,
type-safe memory (and in our case object) reuse maintains pools (i.e., memory regions)
that are used for allocating only a particular type of object. Newly allocated objects
are placed only in their own typed pool, and objects with different types cannot share a
common memory location in the lifetime of the process. Assuming the class hierarchy of a
C++ program is known, types can be defined based on class relations. As a result, we can
reduce the attack surface by forcing pointers of similar typed objects to overlap. Unlike
Cling [6], we focus only on type-safe C++ object reuse, with object types derived from
the recovered class hierarchy. On the other hand, Cling is C++ agnostic in principle and
the class hierarchy as reconstructed by Marx can significantly improve it in handling C++
allocations. The benefit is to reduce the number of typed pools (and memory usage) and
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also avoid expensive instrumentation to derive the run-time type (Cling relies on callstack
hashes rather than offline type information).

To demonstrate this concept, we built a type-safe object reuse system based on the class
hierarchy exported by Marx . Our system consists of two parts: an allocator with type-
safe object reuse support and a library to instrument object allocations. The allocator
enhances tcmalloc with functions that leverage type information to place new objects in
type-based pools.

Specifically, in tcmalloc, pools are subdivided in alignment pools. For performance
reasons, tcmalloc keeps track of thread-local pools and one central pool. When a thread-
local pool reaches a predefined limit of free pages, it transfers some of the free pages to
the central pool. Merging pools can be an issue for typed allocations since different types
can end up in the same pool. Notice that new typed allocations must be aligned with
past ones. When the allocation size does not divide the page size, it is possible that an
object overlaps two pages. If this is the case and at least one of the two pages with the
overlapping object are given back to the central pool, we cannot guarantee that following
allocations are correctly aligned. Therefore, we do not give any memory back from typed
pools if the alignment size class does not divide the size of a page.

Finally, our type-safe object reuse application contains a shared library that instruments
all allocations at runtime. The shared library is preloaded with the protected binary to
trigger type-based allocations when virtual objects are instantiated and to resolve the
actual allocation type based on the available class hierarchy. The type resolution works as
follows. We start by preprocessing the analysis of Marx to construct triples of the form
(location, size, type). Here, location is the address of the call-site of new, size the
size given to new, and type is a unique identifier. Moreover, the type identifier (or type
tag) is generated by assigning a distinct value to each unique class hierarchy found by
Marx . At runtime, we load the file containing these triples and store them in a hashtable.
This hashtable uses the tuple (location, size) as key and the type as value. The shared
library overrides the new and new[] operators, so we can infer the type information before
dispatching to our typed allocation function in tcmalloc. Note that some allocations
may be missed. We stress here that our intention is to showcase a prototype based on the
exported class hierarchy and not a mature defense. In a real setting, the binary should be
rewritten [17] by adding the resolution code to all callsites that construct virtual objects—
eliminating the need for any run-time type inference instrumentation.

For each occurring allocation, the size of the allocation is used as the key and the location
is computed using the return address. With this information, the type tag is retrieved
from the hashtable and passed to the modified allocator function, which maintains a pool
per allocated type. When no type exists for the particular location and size combination,
a value of zero is returned. The allocator uses this value to choose a fast path, where no
typed memory pools are used.

4.5 Evaluation

In this section, we evaluate Marx and its applications in terms of performance and accu-
racy. Unless stated otherwise, all test cases are compiled using GCC 4.8.5. Our test cases
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include a variety of real-world applications and shared libraries. Consequently, no alter-
ations to the compiler options specified by a test case have been made, i.e., each program
is compiled with the compiler flags intended by the authors. Although Marx ’s purpose
is to analyze closed-source software, our evaluation uses open-source software since other-
wise, we are not able to generate a ground truth to compare against. We evaluated our
class hierarchy reconstruction and virtual callsite target resolution on Ubuntu 14.04 LTS
running on an Intel Core i7-2600 CPU with 16 GB of RAM.

The evaluation testbed for our binary vtable protection and type-safe object reuse im-
plementations is a system with an Intel Core i7-6700K CPU @ 4.00GHz and 16 GB of
RAM, running Ubuntu 14.04 LTS with Linux kernel 4.2.0 and transparent huge paging
disabled.

4.5.1 Class Hierarchy Reconstruction

The main goal of our framework is to provide an analyst with accurate information about
the class hierarchies. Hence, we evaluated the precision of Marx by comparing the analysis
results with the class hierarchies of the application as reported by the compiler. More
specifically, the ground truth is obtained by parsing the RTTI of the target application.
Remember that our analysis reconstructs an individual class hierarchy as a set and does
not contain information about the direction of inheritance. Hence, the ground truth is
also extracted as a set. Table 4.1 shows the accuracy of our class hierarchy reconstruction
for various real-world applications and shared libraries. Sizes in the table are given in MiB
and are taken from the stripped binaries without debug information.

Overall, we observe that Marx is capable of precisely recovering the information about
the class hierarchies for many types of applications. We find that the results are better for
applications than for shared libraries. For applications, the analysis process was able to
correctly reconstruct 84.8% of the hierarchies on average. Only 6.3% are underestimated
and also 6.3% of the hierarchies were not found. For shared libraries, on average, 72.3%
of the hierarchies were correctly reconstructed, while 8.5% of the hierarchies were under-
estimated and 11.3% were not found. Consequently, we conclude that Marx is able to
recover most of the class hierarchies of the target binaries completely and therefore pro-
vides helpful information for an analyst. The difference between applications and shared
libraries results stem from the fact that the analysis of a shared object misses a lot of
context (cf. Section 4.3.1). Shared objects are not written to be executed as a standalone
application. Hence, most functions are not called from within the shared object, but only
from an application, using the interface exposed by the library.

This is also evident when looking at the time needed to analyze an application in
comparison to a shared library. Almost all of the tested shared libraries are analyzed in
under a minute. The functions of applications are more connected with each other through
calls. Since Marx follows these connections and analyzes the called functions within the
current context, it needs more time to analyze the whole application. In contrast, shared
libraries tend to provide a rather “flat” functionality and do not have so many connected
functions. Hence, analyzing them is faster.

The application with the best results is VboxManage. Marx underestimated only one
hierarchy and correctly reconstructed the remaining 32. However, Marx also found 9
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Table 4.1: Results of the class hierarchy reconstruction analysis. size gives the size of the
stripped binary in MiB. #GT and #analysis give the number of hierarchies in
the ground truth and found during the analysis, respectively. #matching gives
the number of hierarchies that are correctly reconstructed. #overestimated
and #underestimated give the number of reconstructed hierarchies that are
overestimated and underestimated, respectively. #not found gives the number
of hierarchies that were not found during the analysis. #not existing gives the
number of hierarchies that were found during the analysis but do not exist in
the ground truth. time needed gives the time that the static analysis needs to
complete.
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VboxManage 5.0.24 0.97 33 45 32 – 1 – 9 0:06:12
MySQL Server 5.7.11 23.91 78 117 69 1 7 1 – 11:36:17

MongoDB 3.2.4 27.72 158 253 137 – 8 13 63 1:08:41
Node.js 5.10.1 15.18 59 84 55 2 2 – 14 0:33:16

FileZilla 3.13.1 (GCC 4.9) 4.42 21 9 3 6 4 8 1 1:19:59

VboxRT.so 5.0.24 2.27 3 3 2 – – 1 1 0:00:02
VboxXPCOM.so 5.0.24 1.06 8 14 3 – 2 3 1 0:00:05

libFLAC++.so 6.3.0 0.10 3 3 3 – – – – 0:00:01
libebml.so 1.3.3 0.14 2 2 2 – – – – 0:00:01

libmatroska.so 1.4.4 0.65 2 2 2 – – – – 0:00:17
libmusicbrainz5cc.so 5.1.0 0.56 3 2 1 – 1 1 – 0:00:01

libstdc++.so 6.0.18 0.93 5 24 2 – 2 1 – 0:00:01
libwx baseu-3.1.so 3.1.0 2.55 33 26 26 – – 7 – 0:00:47

libwx baseu net-3.1.so 3.1.0 0.29 5 7 4 – 1 – – 0:00:01
libwx gtk2u adv-3.1.so 3.1.0 1.94 20 23 17 1 1 1 – 0:00:21
libwx gtk2u aui-3.1.so 3.1.0 0.59 7 7 5 1 1 – – 0:00:01
libwx gtk2u core-3.1.so 3.1.0 5.92 41 46 31 6 2 2 1 0:01:17
libwx gtk2u html-3.1.so 3.1.0 0.79 5 9 2 2 1 – – 0:00:06
libwx gtk2u xrc-3.1.so 3.1.0 1.06 4 4 2 1 1 – – 0:00:03
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hierarchies that do not exist in the application. Note that non-existing hierarchies are most
likely not used in code constructs such as vcalls or object creation at a new operator. Hence,
in applications such as vtable protection or type-safe object reuse such overestimations
have no effect and do not influence the results.

For the largest application, MongoDB, Marx was able to reconstruct 137 out of 158
hierarchies correctly. Only 8 hierarchies were underestimated and 13 were not found
during the analysis. Most of these missing hierarchies are connected via an abstract class
which was not referenced in the binary code (most likely due to compiler optimizations)
and hence not found during the analysis. For the largest shared library, libwx gtk2u core-
3.1.so, 31 hierarchies were correctly reconstructed. 2 hierarchies were underestimated and
only 2 were not found during the analysis.

The application FileZilla had to be compiled with GCC 4.9 since it requires support for
C++14, which is not available for GCC 4.8. It has the worst results of all test cases, as
only 3 out of 21 hierarchies were reconstructed correctly. 6 hierarchies were overestimated
during reconstruction, 4 underestimated, and 8 not found at all. A manual evaluation
of the underestimated and missing hierarchies yields two reasons for these results: First,
most of these hierarchies are connected via classes for which no vtable has been emitted by
the compiler, which is why Marx cannot leverage them. This is due to optimization passes
that remove these vtables from the binary. A detailed discussion is given in Section 4.6.
Second, FileZilla makes heavy use of the wxWidgets library (i.e., the shared objects with
libwx prefix in Table 4.1). Some underestimated hierarchies are connected via vtables
from these shared objects. Despite Marx ’s inter-modular data flow ability, it was not able
to find a connection between all classes of the underestimated hierarchy with the external
ones. A manual investigation revealed that not all classes (despite their connection to an
external class according to RTTI) execute a library function that overwrites the vtblptr—
presumably due to compiler optimizations.

4.5.2 Virtual Callsite Targets

With static analysis, it is hard to determine the target function of an indirect call. As
noted earlier, for binaries compiled from C++ code, virtual functions are mostly imple-
mented using indirect call instructions. To assist a reverse engineer, our static analysis
hence attempts to resolve the target set of a vcall as accurately as possible. To evalu-
ate the correctness of the analysis, we utilize the VTV (Virtual Table Verification) GCC
pass [149] to generate the ground truth. VTV collects class information at compile time
and emits code that verifies each virtual call before (potentially) executing it. Verification
is performed by checking the object’s vtable against a set of allowed vtables. In essence,
this performs a check against a specific class hierarchy. For our ground truth, we extract
said information and try to match it to the vcall it guards. As test cases, we evaluated the
applications used in Section 4.5.1. Unfortunately, we were unable to compile the applica-
tions MySQL Server and VBoxManage with VTV. More specifically, the compiler crashed
during the compilation of MySQL Server and for VBoxManage we were not able to pass
the configure script.

Table 4.2 shows the results of the vcall target resolution. Remember that non-
conservative mode did not require validity of the thisptr , but only a dependency on the
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Table 4.2: Results of the virtual callsite resolution. #GT and #analysis give the number
of virtual callsites in the ground truth and the framework’s results, respectively.
#correct gives the number of virtual callsites identified correctly. identified
gives the value in percent of how many virtual callsites of the ground truth
are identified. #resolved gives the number of resolved virtual callsite targets
for the non-conservative and conservative mode (the latter in parentheses). #
matching gives the number of resolved targets which match completely with the
ground truth. #overestimated and #underestimated give the number of target
sets that are overestimated and underestimated, respectively. #not existing
gives the number of virtual calllsites resolved that do not exist in the ground
truth.
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VboxManage 7 7 7 7 7 7 7 7 7

MySQL Server 7 7 7 7 7 7 7 7 7

MongoDB 14357 13369 12607 87.8% 736 (589) 159 (91) 550 (471) 27 (27) 0 (0)
Node.js 4925 5591 4879 99.0% 798 (754) 166 (142) 629 (611) 1 (0) 2 (1)
FileZilla 2779 2544 2495 89.7% 226 (210) 3 (3) 56 (48) 167 (159) 0 (0)

vtblptr when calculating the target address. As evident from the table, non-conservative
mode is able to resolve more vcalls during the analysis. Furthermore, the false positive
rate did not increase significantly.

For the application Node.js, only 2 vcalls were wrongly detected in non-conservative
mode, whereas only 1 was not found in conservative mode. In turn, the non-conservative
mode finds 43 vcalls more compared to conservative mode. All in all, for Node.js, the
analysis was able to identify 4,879 vcalls correctly, which are 99.0% of all virtual callsites.

The worst results were achieved for FileZilla. The analysis was only able to resolve
3 vcalls correctly and most of the remaining resolved vcalls were underestimated. This
results from the relatively poor results during class hierarchy reconstruction in comparison
to the other applications. Due to missing and underestimated hierarchies, Marx under-
estimates the targets of most of the resolved vcalls. However, 2,495 vcalls were identified
correctly, which are 89.7% of all virtual callsites.

Overall, Marx is able to support an analyst by providing him with potential target
addresses for vcalls. Depending on the precision of the class hierarchy reconstruction, the
set of target addresses might be underestimated. However, most of the target sets are
overestimated such that the analyst does not miss branches during the analysis. On aver-
age, 90.5% of all virtual callsites were identified by Marx during the analysis. While the
results of the call target resolution are helpful for a reverse engineer, more comprehensive
target sets can be obtained by combining our static approach with a dynamic profiling
phase (such as in Section 4.4.1).
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Table 4.3: Evaluation results for our binary vtable protection implementation. For each
binary, the table shows (i) Binary Instrumentation details, depicting the num-
ber of instrumented vcalls, written labels and moved functions; (ii) Runtime
Statistics, listing the number of vcalls executed at runtime, the number of vcalls
for which a matching type was found at the target function (fastpath), the num-
ber of times the slowpath was entered, and the number of unique paths that
require JIT verification; and (iii) Normalized Runtime, listing our vtable protec-
tion runtime overhead without verification (hashing only) and with a synthetic
verification timeout of 10ms per unique path (+verification).
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MySQL 10,864 8,421 28,971 106,330,186 105,035,488 1,294,698 9 1.145 1.155
Node.js 5,905 5,917 26,751 31,491,929 31,491,918 11 6 1.263 1.265

astar 1 1 96 4,595,981,552 4,595,981,552 0 – 1.031 1.031
dealII 1,434 1,428 7,217 96,751,718 96,751,718 0 – 1.012 1.012
namd 2 3 102 2,016 2,016 0 – 0.999 0.999
omnetpp 706 725 1,949 2,061,547,468 2,061,206,142 341,326 361 1.067 1.083
povray 109 111 1,622 4,704,273,295 4,704,273,295 0 – 1.103 1.103
soplex 497 498 873 1,772,890 1,155,673 617,217 661 1.016 1.086
xalancbmk 9,303 9,340 12,808 8,306,798,756 8,306,260,183 538,573 111 1.264 1.272

geomean 342 350 2,318 91,018,910 86,672,172 0 67 1.096 1.108

4.5.3 VTable Protection

We focus the performance evaluation of our vtable protection implementation on two
popular Linux C++ servers and the seven C++ applications found in SPEC. Specifi-
cally, we evaluated our binary vtable protection with a cross-platform runtime environ-
ment for server-side web applications (Node.js 5.10.1, statically compiled with Google’s
v8 JavaScript engine) and a database server (MySQL 5.7.11). To benchmark Node.js,
we configured the Apache benchmark [146] to issue 250,000 requests with 10 concurrent
connections and 10 requests per connection for the default page. To benchmark MySQL,
we configured the Sysbench OLTP benchmark [90] to issue 10,000 transactions using a
read-write workload.

We evaluated our vtable protection instrumentation using the analysis results from
Marx . To determine the impact on runtime performance, we measured the time to com-
plete the execution of the benchmarks and compared against the baseline—i.e., the original
version of the benchmark with no binary instrumentation applied. Table 4.3 details our
results.

As shown in the table, it is evident, considering the massive number of executed vir-
tual calls, that our vtable protection performs surprisingly well—10.8% runtime overhead
across all the tested applications (geometric mean). Interestingly, there seems to be no
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Table 4.4: Evaluation results for our type-safe object reuse implementation. For each
binary, the table shows (i) Marx Statistics, depicting the number of extracted
new calls and the number of different types; (ii) Runtime Statistics, listing the
number of used types, calls to malloc, new, and the new-array operator during
execution, and (iii) Normalized Runtime.

Marx Statistics Runtime Statistics
Normalized

Runtime

Program #new #types #types #malloc #new #new[] overhead

MySQL 1,017 47 16 2,705,675 82,225 13 1.009
Node.js 4,675 38 14 7,685,562 12,228,927 9,093,605 1.022

astar 11 0 0 1,008,577 108,037 8 0.999
dealII 1,632 11 5 48 144,642,689 6,616,448 1.016
namd 584 2 1 2 2 1,320 0.999
omnetpp 717 9 1 45,950,697 0 221,218,929 1.028
povray 54 7 6 2,414,075 83 176 0.995
soplex 20 6 2 3,718 3 4 0.997
xalancbmk 2,051 167 46 6,854 135,148,541 158 1.046

geomean 350 6 2 56,309 6,032 3,888 1.012

direct correlation between the number of executed virtual calls and the resulting overhead.
SPEC binaries astar and povray, for example, both execute over 4.5 billion virtual calls—
all resolved using Marx ’s analysis results—but yield fairly different runtime overheads:
3% for astar, vs 10% for povray, a delta that might be caused by CPU caching behavior.
We believe that these results are encouraging: they demonstrate that enforcing vtable
protection (or CFI) over likely (rather than precise) invariants by using a slow path for
second-stage verification is feasible in practice.

4.5.4 Type-safe Object Reuse

To evaluate our type-safe object reuse application, implemented on top of Marx , we ran
experiments on the same set of applications described in Section 4.5.3. Table 4.4 presents
our results. The first two columns contain the number of unique new (including new[])
callsites and types found by Marx ’s analysis. Next, we present the number of unique types
caught by our library, followed by the number of times malloc, new and new[] were called
(either typed or untyped) during the benchmark. Finally, we show the overhead from our
library.

We observe a slight speedup for astar, povray and soplex. As can be observed from
Table 4.4, the latter two are not heavy users of the new and new[] operators, and although
astar performs many calls to new, we detected no types during its execution. This is caused
by the fact that astar does not rely on many C++ features [81]: Marx recovered one vtable
which is never written into a heap object in the program. Thus, the new operator is never
used with a type.

Our results for the real-world applications Node.js and MySQL are much more realistic
compared to the SPEC benchmarks: our type-safe object reuse implementation captures
a significant fraction of the C++ types as reconstructed by Marx . Although both appli-
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cations heavily depend on C++ objects, the overhead imposed by the type-safe object
reuse application is low. For example, in Node.js, we recorded more than 21 million new
objects, while its normalized runtime is 2.2%. We think that these results are encourag-
ing: type-safe object reuse provides significant security invariants, while our experiments
report a performance overhead of less than 5% (geometric mean).

4.6 Discussion

In the following, we discuss the effects of compiler optimizations on our analysis and review
several ways to optimize our prototype implementation.

4.6.1 Compiler Optimizations and Lost Information

Even though all of our evaluation results are encouraging, we note that the biggest limita-
tions of our approach are due to compiler optimizations and a loss of information on the
binary level. Inherently, Marx is dependent on vtables (and references to them) emitted
by the compiler. Especially for abstract base classes, however, such relations may not
be revealed by certain vtable usage patterns; the information is simply missing from the
binary and we cannot recover this information. This increases the observable gap between
the formal class hierarchy as set up by the programmer and the results obtained by Marx ,
based on artifacts found in the (optimized) binary itself.

Such a case was encountered during the evaluation of FileZilla. A compiler optimization
removed vtables of abstract classes from the binary which were the base classes of complete
hierarchies. As a result, the overwrite analysis failed to join the smaller hierarchies. Since
the vtables did not have other characteristics that allows our approach to find a connection
(e.g., via heuristics discussed previously), the reconstructed hierarchies were either not
complete or not found at all. Hence, the quality of our results depends on the size of the
gap between the formal and the actual class hierarchy as encoded in the binary.

Other than this, we did not encounter any application-specific idiom that affect the
accuracy of our results.

4.6.2 Improving Analysis Contexts

Since our static analysis approach focuses on real-world applications, we had to weigh
up precision against performance to be able to scale to complex binaries. Hence, we
introduced limiting factors such as the call depth restriction and characteristics that we
deem as interesting in a basic block. One problem that may arise with these restrictions
is that we may miss important information during our analysis. Consider, for example, a
function fimp which yields valuable information for our analysis, but is called from a fixed
callsite. In the following, we call such a function an important function. When our static
analysis processes the function’s caller and the basic block that calls fimp is not considered
interesting, it is highly likely that no path is generated which ends up in fimp. Hence,
our analysis misses context that would be provided by the function and its results loose
precision.
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A näıve approach to tackle this problem is to consider all call instructions as interesting
during the path generation (i.e., follow every call). This, however, does not scale to real-
world applications due to the path explosion problem. A better solution is to mark those
basic blocks with call instructions as interesting that eventually reach important functions.
In other words, we recognize importance of functions as a transitive function which, in
turn, impacts the importance of its callers.

However, Marx analyzes the functions on a on-demand basis and does not know if the
target of a call instruction is important for the analysis process (i.e., it only takes infor-
mation local to the current function into account). In order to add global information
about the importance of a function into Marx ’s decision process, we propose to add a
preliminary pre-processing step. In essence, we build a static call graph which allows to
propagate information about important basic blocks up to its callers. During path gen-
eration, this can affect the decision whether or not to follow an (otherwise uninteresting)
call. Additionally, this call graph can be enriched at analysis time to include target sets
resolved at a vcall. Further, it allows to dynamically adjust the call depth.

4.6.3 Improving Shared Library Results

As shown in Section 4.5.1, the class hierarchy reconstruction of shared libraries is not as
precise as for applications. This is due to the fact that shared libraries are written to
be used from other applications or shared libraries. Hence, most functions in a shared
library are not called from within the very same module. As a result, Marx has to analyze
these functions without any context given by the caller (e.g., a vcall is using an object
that is provided by the caller). This missing information leads to a lower precision in
reconstructing the class hierarchy and fewer vcalls are found. One way to tackle this
problem is to analyze the shared library in combination with an application that is using
it. Once a function inside a shared library is called from the application, the analysis
framework has a context that might help improving the results. However, this does not
necessarily cover all exported functions of the shared library. Also, an analyst might not
always have an application at hand that is using the shared library that he has to analyze.

4.6.4 Reconstructing RTTI

An interesting application of the class hierarchy reconstruction results is the subsequent
reconstruction of RTTI associated with vtables. This information can, in turn, be lever-
aged by other applications, such as analysis programs or protection mechanisms which are
able to perform better when provided with RTTI. Notably, this would be an easy way to
incorporate our results in potentially closed-source applications which would not require
modifications to the programs themselves. However, since Marx is not able to recover the
class hierarchies with full precision in the general case, the applications have to be able to
cope with a certain amount of imprecision.

Furthermore, RTTI holds information about the inheritance direction. More specifically,
it only contains a pointer to the RTTI of parent classes. Currently, our analysis approach
is not able to extract the direction of the inheritance. Therefore, the recovered RTTI
would contain all classes that are in the same hierarchy and therefore overestimate it.
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4.6.5 Improving VTable Protection

As shown in Section 4.5.3, the results of Marx can be used for a binary-only CFI imple-
mentation focusing on vcalls. However, even with a dynamic profiling phase to improve
the results of our static analysis, the slow path of our implementation is still required
by some applications, which leads to a relatively high performance overhead. In order to
tackle this problem, the implementation can be extended to use the technique proposed
by Prakash et al. [127]. If our analysis cannot assign a reconstructed class hierarchy to a
given vcall, the CFI implementation can allow all functions at the same offset in any known
vtable. This way, the implementation would have two different protection granularities:
For vcalls with an assigned class hierarchy, the set of allowed functions lies within the
class hierarchy. For vcalls without an assigned class hierarchy, the set of allowed functions
lies within the known vtables. Hence, the verification at a vcall without an assigned class
hierarchy can also be implemented using a simple label check.

4.7 Related Work

We now review related work on the reconstruction of C++ class hierarchies and discuss
how Marx advances the field. Most similar to our static analysis approach is the work
conducted by Jin et al. [83]. Their approach, called objdigger, uses symbolic execution
and inter-procedural data flow analysis to discover objects of classes, their attributes, and
methods. However, their approach does not reconstruct the class hierarchy and only the
ideas to recover it are described in the paper (which are similar to our vtblptr overwrite
analysis). Furthermore, the evaluation is only done on small test cases with up to 10
classes instead of complex binaries.

The approach presented by Fokin et al. [59] focuses on reconstructing the class hier-
archies of C++ programs. Their approach recovers the vtables in memory and analyzes
them and their corresponding constructors. However, they focus on analyzing the struc-
ture of the vtable size and the usage of pure virtual functions to recover the direction
of the inheritance. The data-flow through the program is not considered in their work,
leading to a certain imprecision.

Katz et al. [85] proposed an approach to support an analyst that reverse engineers C++
binaries based on machine learning. Their approach outputs a probability that indicates
what class is used at a given vcall. This is done by using sequences of instructions that
can be assigned to a specific class as a training set. The trained model is then used to
estimate other vcalls and the used class, with the goal of giving the analyst a hint where
the control flow might go next. Unfortunately, their approach ignores polymorphism and
is only able to provide one possible branch target. Additionally, their evaluation was done
on small applications (largest one has a size of around 1MB) on a machine with 64 CPUs
that took several hours. Therefore, their approach is not able to support an analyst on
reverse engineering real-world C++ applications.

The binary analysis framework angr is presented by Shoshitaishvili et al. [139]. Their
work focuses on re-implementing existing techniques for vulnerability identification in
order to compare them with each other. The introduced framework has a modular design
and provides the possibility to be extended with new analysis techniques. The presented
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algorithms of our approach could also be implemented with angr instead of writing an
own framework. However, angr is written in Python and due to its performance, it is
likely not efficient for large real-world binaries such as Node.js or MySQL Server.

Prakash et al. [127] presented vfGuard, a binary-only indirect call protection mechanism
for C++ binaries. Their approach tries to protect vcalls by creating a whitelist with valid
calll targets. If the target address is not within the whitelist, an attack is assumed and
the execution is terminated. The whitelist is determined by the offset into the vtable that
is used by the vcall. However, they do not try to recover the class hierarchies because of
its difficulty and just allow any vtable at a vcall (with some additional filtering). T-VIP,
proposed by Gawlik et al. [63], is also a binary-only approach to protect virtual callsites
from vtable hijacking attacks. However, they do not recover C++ specific structures such
as vtables, but reduce the virtual callsite characteristics to two heuristic policies. The first
policy restricts the vtblptr to point to read-only memory at a vcall. The second policy
checks if a random function pointer in the vtable points to memory that is not writable.
Both policies narrow down the ability of an attacker to inject a crafted vtable. However,
more advanced code-reuse attacks such as proposed by Schuster et al. [135] are not affected
by these policies. Gawlik et al. also proposed a third policy to check if the used vtable
resides in an allowed set built with the help of the class hierarchy. However, they did not
implement this idea because previous existing work did not show a practicable recovery
of class hierarchies for real-world programs.

Most similar to our presented application of a type-safe object reuse is Cling, a work
presented by Akritidis [6]. Cling is a type-safe memory allocator used to mitigate use-
after-free attacks. It modifies the heap allocation process to provide types for each memory
allocation that is made in the application. Cling uses the address of the allocation site and
size as a type for its pools. Hence, a use-after-free bug only grants access to the remaining
data of the same object type. In contrast, our presented application builds types on the
base of the reconstructed class hierarchies. Since Cling is C++ agnostic in principle, the
class hierarchy as reconstructed by Marx can significantly improve it in handling C++
allocations. The benefit is to reduce the number of typed pools (and memory usage) and
also avoid expensive instrumentation for deriving the run-time type. In a similar fashion,
VTPin [133], a vtable hijacking protection for binaries, which is currenlty class-agnostic,
could potentially leverage the extracted hierarchies for increasing the accuracy in collecting
pinned vtable pointers.

4.8 Conclusion and Future Work

In this chapter, we presented a practical and efficient approach to reconstruct C++ class
hierarchies from a given binary application. Our static analysis follows the data flow
and tracks objects through multiple paths through the target binary while taking C++
characteristics into account. Hence, we recognize artifacts resulting from the way compilers
implement high-level features such as polymorphism and use them to recover information
about the relation of classes in the binary.

We presented the design and implementation of a tool called Marx capable of per-
forming the outlined approach and evaluated it on several large, real-world applications.
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The results are promising: On average, Marx precisely reconstructed 84.6% of the class
hierarchies of applications and 73.3% of the class hierarchies of shared libraries. The
information provided by our analysis can then be used to resolve the sets of potential
target functions of virtual callsites and helps an analyst following control flow even across
previously unresolvable indirect calls.

Furthermore, we present two applications built atop of the analysis results: First, an
improved vtable protection mechanism for binary executables capable of verifying the in-
tegrity of the control flow. Second, type-safe object reuse, which enhances type-safe mem-
ory allocators. We show that based on our results, practical defenses that improve security
can be developed even in cases where the extracted class hierarchy is reconstructed im-
perfectly. Our vtable protection treats violations as anomalies and performs more heavy-
weight checks on a slow path, hence, trading off on performance to compensate for the
imprecision. The presented type-safe object reuse application can tolerate type-to-pool
mapping mismatches and thus trades off on security to handle the imprecision. In short,
we show that it is possible to build fully conservative binary-level defense solutions on top
of imprecise information.

Even though the evaluation demonstrates that the analysis results can improve binary-
level defenses, a remaining imprecision is left. Improving C++ binary-only protections
to close the gap between security guarantees source-code based and binary-only defenses
provide is subject in the next chapter.

In terms of future work, it would be interesting to explore if the direction of the class
relations can be recovered. To this end, the analysis could leverage the order in which
constructors and deconstructors overwrite vtblptrs. However, it remains to be seen if
the order of write operations is sufficient to reconstruct the directions of an entire class
hierarchy and if other C++ characteristics exist that contain information about the class
relations. Additionally, this advancement would allow reconstructing RTTI in the binary
executable, which would be an easy way to make the results usable by other analysis
tools.
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Chapter 5
Excavating C++ Constructs from Binaries
to Protect Dynamic Dispatching

Software implemented in the C++ language is vulnerable to increasingly sophisticated
memory corruption attacks [28, 39, 67, 135, 155, 157]. C++ is often the language of choice
for complex software because it allows developers to structure software by encapsulating
data and functionality in classes, simplifying the development process. Unfortunately, the
binary-level implementations of C++ features such as polymorphism and inheritance are
vulnerable to control-flow hijacking attacks, most notably vtable hijacking. This attack
technique abuses common binary-level implementations of C++ virtual methods where
every object with virtual methods contains a pointer to a virtual function table (vtable)
that stores the addresses of all the class’s virtual functions. To call a virtual function,
the compiler inserts an indirect call through the corresponding vtable entry (a virtual
callsite). Using temporal or spatial memory corruption vulnerabilities such as arbitrary
write primitives or use-after-free bugs, attackers can overwrite the vtable pointer. Subse-
quent virtual calls then use addresses in an attacker-controlled alternative vtable, which
results in a hijacked control flow. In practice, vtable hijacking is a common exploitation
technique widely used in exploits that target complex applications written in C++, such
as web browser and server applications [148].

Control-Flow Integrity (CFI) solutions [1,19,114,125,149,156,158] protect indirect calls
by verifying that control flow is consistent with a Control-Flow Graph (CFG) derived
through static analysis. However, most generic CFI solutions do not take C++ semantics
into account and leave the attacker with enough wiggle room to build an exploit [67,135].
Consequently, approaches that specifically protect virtual callsites in C++ programs have
become popular. If source code is available, compiler-level defenses can benefit from the
rich class-hierarchy information available at the source level [21,26,149,164]. However, var-
ious legacy applications are still in use [115], or proprietary binaries have to be protected,
which do not offer access to the source code (e.g., Adobe Flash [4]). Here, binary-level de-
fenses [55,63,127,165] must rely on (automated) binary analysis techniques to reconstruct
the information needed to guarantee security and correctness. As Chapter 4 has shown,
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these analysis results improve the security of a program significantly, but imprecisions of
the analysis still leaves wiggle room for an attacker.

5.1 Introduction

To improve binary-only defenses against vtable-hijacking attacks and to further close the
gap between security guarantees source-code based and binary-only defenses provide, we
present VTable Pointer Separation (vps). Unlike previous binary-only defenses against
vtable-hijacking attacks that restrict the set of vtables permitted for each virtual callsite,
we check that the vtable pointer remains unmodified after object creation. Intuitively,
vps checks the vtable pointer’s integrity at every callsite. Because the vtable pointer in a
legitimate live object never changes and the virtual callsite uses it to determine its target
function, vps effectively prevents vtable-hijacking attacks. In essence, we want to bring
a defense as powerful as CFIXX [26] (which operates at the source level) to binary-only
applications, even though none of the information needed for the defense is available. Our
approach is suitable for binaries because, unlike other binary-level solutions, we avoid the
inherent inaccuracy in binary-level CFG and class-hierarchy reconstruction. Because vps
allows only the initial virtual pointer(s) of the object ever to exist, we reduce the attack
surface even compared to hypothetical implementations of prior approaches that statically
find the set of possible vcall targets with perfect accuracy.

Given that binary-level static analysis is challenging and unsound in practice, and may
lead to false positives in identifying virtual callsites, we carefully deal with such cases by
over-approximating the set of callsites and implementing an (efficient) slow path to handle
possible false positives at runtime. Meanwhile, vps handles all previously verified callsite
with highly-optimized fast checks. This approach allows us to prevent false positives from
breaking the application as they do in existing work [55, 63, 127, 165]. Additionally, while
existing work [83,85,86] (as well as Marx in Chapter 4) only considers directly referenced
vtables, compilers also generate code that references vtables indirectly, e.g., through the
Global Offset Table (GOT). vps can find all code locations that instantiate objects by
writing the vtable, including objects with indirect vtable references.

Our prototype of vps is precise enough to handle complex, real-world C++ applica-
tions such as MongoDB, MySQL server, Node.js, and all C++ applications contained in
the SPEC CPU2006 and CPU2017 benchmarks. Compared to the source-code based ap-
proach VTV, which is part of GCC [149], we can on average correctly identify 97.8% and
97.4% of the virtual callsites in SPEC CPU2006 and SPEC CPU2017, with a precision
of 95.6% and 91.1%, respectively. Interestingly, our evaluation also revealed 86 virtual
callsites that are not protected by VTV, even though it has access to the source code. A
further investigation with the help of the VTV maintainer showed that this is due to a
conceptual problem in VTV, which requires non-trivial engineering to fix. Compared to
the source-code based approach CFIXX, vps shows an accuracy of 99.6% and 99.5% on
average for SPEC CPU2006 and CPU2017 with a precision of 97.0% and 96.9%. These
comparisons show that vps’s binary-level protection of virtual callsites closely approaches
that of source-level solutions. While this still leaves a small attack window, it further
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closes the gap between binary-only and source-level approaches making vtable-hijacking
attempts mostly impractical.

Compared to state-of-the-art binary-level analysis frameworks like Marx , vps’ analysis
identifies 26.5% more virtual callsites in SPEC CPU2017 and thus offers improved pro-
tection. vps induces geomean performance overhead of 9% for all C++ applications in
SPEC CPU2017 and 11% for SPEC CPU2006, which is slightly more than Marx induces
but with significantly better protection.

Contributions We provide the following contributions:

� We present vps, a binary-only defense against vtable-hijacking attacks that sidesteps
the imprecision problems of prior work on this topic. The key insight is that vtable
pointers only change during initialization and destruction of an object (never in
between), a property that vps can efficiently enforce.

� We develop an instrumentation approach that is capable of handling false positives
in the identification of C++ virtual callsites, which would otherwise break the ap-
plication and which most existing work ignores. Unlike prior work, we also handle
indirect vtable references.

� Our evaluation shows that our binary-level instrumentation protects nearly the same
number of virtual callsites as the source-level defenses VTV and CFIXX. In addition,
our evaluation uncovered a conceptual problem causing false negatives in VTV (part
of GCC).

The prototype implementation of vps and the data we used for the evaluation are
available under an open-source license at https://github.com/RUB-SysSec/VPS.

Outline This chapter is structured in the following way: Section 5.2 gives an overview of
the assumed threat model and how vps works on a high-level. Section 5.3 describes the
analysis and instrumentation approach necessary to protect the binary executable with
vps. The implementation of vps is described in Section 5.4, whereas Section 5.5 presents
the evaluation. We then discuss the presented approach in Section 5.6 and give an overview
of related work in Section 5.7. Finally, we conclude this chapter in Section 5.8 and discuss
possible topics for future work.

The chapter is based on research published at the Annual Computer Security Appli-
cations Conference (ACSAC) 2019 [121]. It was performed together with Victor van der
Veen, Dennis Andriesse, Erik van der Kouwe, Thorsten Holz, Cristiano Giuffrida, and
Herbert Bos.

5.2 Overview

In this section, we give an overview of vps. We start by defining the thread model it
protects against and, subsequently, we explain on a high-level how vps works.
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5.2.1 Threat Model: VTable Hijacking Attacks

As we explained in Section 2.2.4, virtual callsites use the vtblptr to extract the pointer to
the called virtual function. Since the object that stores the vtblptr is dynamically created
during runtime and resides in writable memory, an attacker can overwrite it and hijack
the control flow at a virtual callsite.

The attacker has two options to hijack an object, depending on the available vulnera-
bilities: leveraging a vulnerability to overwrite the object directly in memory, or using a
dangling pointer to an already-deleted object by allocating attacker-controlled memory at
the same position (e.g., via a use-after-free vulnerability). In the first case, the attacker
can directly overwrite the object’s vtblptr and use it to hijack the control flow at a vcall.
In the second case, the attacker does not need to overwrite any memory; instead, the
vulnerability causes a virtual callsite to use a still existing pointer to a deleted memory
object. The attacker can control the vtblptr by allocating new memory at the same address
previously occupied by the deleted object.

We assume the attacker has an arbitrary memory read/write primitive, and that the
W ⊕X defense is in place as well as the vtables reside in read-only memory. These are
standard assumptions in related work [1, 55, 149, 165]. The attacker’s goal is to hijack
the control flow at a virtual callsite (forward control-flow transfer). Attacks targeting the
backward control-flow transfer (e.g., return address overwrites) can be secured, for exam-
ple, by shadow stacks which are orthogonal to vps and thus out of scope. Furthermore,
data-only attacks are also out of scope.

5.2.2 VTable Pointer Separation

Our approach is based on the observation that the vtblptr is only written during object
initialization and destruction and cannot legitimately change in between. Therefore, only
the vtblptr that is written by the constructor (or destructor) is a valid value. If a vtblptr
changes between the object was created and destroyed, a vtable-hijacking attack is in
progress. Since these attacks target virtual callsites, it is sufficient to check at each virtual
callsite if the vtblptr written originally into the object still resides there.

Figure 5.1 depicts the differences between a traditional application and a vps-protected
application. The traditional application initializes an object and uses a vcall and the
created object to call a virtual function. As explained in Section 2.2.4, the application
uses the vtable to decide which virtual function to execute. If an attacker is able to
corrupt the object between the initialization and vcall, she can place her own vtable in
memory and hijack the control flow. In contrast, the vps-protected application adds two
additional functionalities to the executed code. While the object is initialized, it stores
the vtblptr in a safe memory region. Before a vcall, it checks if the vtblptr in the object is
still the same as the one stored for the object in the safe memory region. The vcall is only
executed when the check succeeds. As a result, the same attacker that is able to corrupt
the object in between can no longer hijack the control flow. The same concept holds for
vtblptrs written in the destructors. The vtblptr is written into the object and used for
vcalls during its destruction (if it is used at all). Since a vps-protected application stores
the written vtblptr into the safe memory region and checks the integrity of the one in the
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Figure 5.1: High-level overview of the object instantiation and virtual callsite of a tradi-
tional application (top) and a vps protected application (bottom). For both
applications the memory state is given while the instruction pointer executes
the function call.

object if it is used at a vcall, the approach does not need to differentiate between object
initialization and destruction.

In contrast to other binary-only defenses for virtual callsites [55,63,127,165] (as well as
Marx ’s VTable Protection presented in Section 4.4.1) that allow a specific overestimated
set of classes at a virtual function dispatch, vps has a direct mapping between an object
initialization site and the reachable vcalls.

Even though vps looks conceptually similar to CFIXX, adding this protection at the
binary level encounters multiple hurdles. Performing accurate analysis at the binary level
is a challenging problem, especially with regards to object creation sites, where false
negatives would break the protected application. Our analysis has to take direct and
indirect vtable accesses into account, which do not exist on the source level. The virtual
callsite identification has to be as precise as possible in order to provide a high level of
security and it has to be performed without type information. Any false positive in this
result breaks the application, which makes an instrumentation capable of handling these
necessary (a problem that other binary-only approaches do not consider).
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5.3 Approach

vps protects binary C++ applications against control-flow hijacking attacks at virtual
callsites. To this end, we first analyze the binary to identify C++-specific properties and
then apply instrumentation to harden it.

We divide the analysis into three phases: Vtable Identification, Vtable Pointer Write
Operations, and Virtual Callsite Identification. At a high-level, our analysis first identifies
all vtables in the target binary in the Vtable Identification phase. Subsequently, the
identified vtables are used to find all locations in the binary that write vtblptrs. Eventually,
the identified vtables are also used to identify and verify vcalls in the Virtual Callsite
Identification phase. While the Vtable Identification static analysis is an improved and
more exact version of the one presented in Section 4.2.1 (finding vtables in .bss and GOT,
considering indirect referencing of vtables), the other analyses are novel to vps.

Our approach protects virtual callsites against control-flow hijacking attacks by instru-
menting the application using the results from the analysis phase. We instrument two
parts of the program: Object Initialization and Destruction and Virtual Callsites.

In the remainder of this section, we explain the details of our analysis and instrumen-
tation approach. Note that we focus on Linux x86-64 binaries that use the Itanium C++
ABI [60]. However, our analysis approach is conceptually mostly generic and with ad-
ditional engineering effort can be applied to other architectures and ABIs as well. For
architecture-specific steps in our analysis, we describe what to modify to port the step to
other architectures.

5.3.1 Analysis: Vtable Identification

To protect vtblptrs in objects, we need to know the location of all vtables in the binary.
To find these, our static analysis searches through the binary and uses a set of rules
to identify vtables. Whenever all rules are satisfied, the algorithm identifies a vtable.
Figure 2.3 in Chapter 2 shows a typical vtable structure. The smallest possible vtable in
the Itanium C++ ABI [60] consists of three consecutive words (Offset-to-Top, RTTI, and
Function-Entry). We use the following five rules to determine the beginning of a vtable:

R-1 In principle, our algorithm searches for vtables in read-only sections such as .rodata
and .data.rel.ro. However, there are exceptions to this. If a class has a base class
that resides in another module and the compiler uses copy relocation, the loader will
copy the vtable into the .bss section [65]. Additionally, vtables from other modules
can be referenced through the Global Offset Table (GOT), e.g., in position-independent
code [150]. To handle these cases where the vtable data lies outside the main binary, we
parse the binary’s dynamic symbol table and search for vtables that are either copied to
the .bss section or referenced through the GOT. Note that we do not rely on debugging
symbols, only on symbols that the loader uses, which cannot be stripped.

R-2 Recall that the vtblptr points to the first function entry in a class’s vtable, and
is written into the object at initialization time. Therefore, our algorithm looks for code
patterns that reference this first function entry. Again, there are special cases to handle.
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The compiler sometimes emits code that does not reference the first function entry of the
vtable, but rather the first metadata field at offset -0x10 (or -0x18 if virtual inheritance is
used). This happens for example in position-independent code. To handle these cases, we
additionally look for code patterns that add 0x10 (or 0x18) to the reference before writing
the vtblptr into the object, which is necessary to comply with the Itanium C++ ABI [60].
Our algorithm also checks for the special case where vtables are referenced through the
GOT instead of directly.

R-3 As depicted in Figure 2.3 in Chapter 2, the Offset-to-Top is stored in the first
metadata field of the vtable at offset -0x10. In most cases this field is 0, but when
multiple inheritance is used, this field gives the distance between the base vtblptr and the
sub-vtblptr in the object (see Section 2.2.2). Our algorithm checks the sanity of this value
by allowing a range between -0xFFFFFF and 0xFFFFFF, as proposed by Prakash et al. [127].

R-4 The RTTI field at offset -0x8 in the vtable, which can hold a pointer to RTTI
metadata, is optional and usually omitted by the compiler. If omitted, this field holds 0;
otherwise, it holds a pointer into the data section or a relocation entry if the class inherits
from another class in a shared object.

R-5 Most of the vtable consists of function entries that hold pointers to virtual functions.
Our algorithm deems them valid if they point into any of the .text, .plt, or .extern

sections of the binary, or are relocation entries.

Abstract classes are an edge case. For each virtual function without implementation,
the vtable points to a special function called pure virtual. Because abstract classes are
not meant to be instantiated, calling pure virtual throws an exception. Additionally, the
first function entries in a vtable can be 0 if the compiler did not emit the code of the
corresponding functions (e.g., for destructor functions). To cope with this, we allowed
0 entries in the beginning of a vtable for Marx ’s analysis in Section 4.2.1. For vps, we
omit this rule because it can safely ignore the instantiation of abstract classes, given that
vtblptrs for abstract classes are overwritten shortly after object initialization.

In case of multiple inheritance, we do not distinguish between vtables and sub-vtables.
That is, in the example in Figure 2.3 in Chapter 2, our approach identifies Vtable C and
Sub-Vtable C as separate vtables. As discussed later, this does not pose any limitations
for our approach given our focus on vtblptr write operations (as opposed to methods that
couple class hierarchies to virtual callsites).

The combination of multiple inheritance and copy relocation poses another edge case.
In copy relocation, the loader copies data residing at the position given by a relocation
symbol into the .bss section without regards to the type of the data. For classes that use
multiple inheritance, the copied data contains a base vtable and sub-vtable(s), but the
corresponding relocation symbol holds only information on the beginning and length of
the data, not the vtable locations. To ensure that we do not miss any, we identify every
8-byte aligned address of the copied data as a vtable. For example, if the loader copies a
data chunk of 0x40 bytes to the address 0x100, we identify the addresses 0x100, 0x108,
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0x110, . . . up to 0x138 as vtables. While this overestimates the set of vtables, only the
correct vtables and sub-vtables are referenced during object initialization.

Note that on other architectures, the assumed size of 8-byte per vtable entry as used by
our rules may have to be adjusted. For example, Linux on x86 (32-bit) and ARM would
use 4-byte entries, with no conceptual changes.

5.3.2 Analysis: Vtable Pointer Write Operations

The next phase of our static analysis is based on the observation that to create a new
object, its vtblptr has to be written into the corresponding memory object during the
initialization. This is done in the constructor of the class which can be either an explicit
function or inlined code. The same holds for object destruction by the corresponding
destructor function. Hence, the goal of this analysis step is to identify the exact instruction
that writes the vtblptr into the memory object. This step is Linux-specific but architecture-
agnostic.

First, we search for all references from code to the vtables identified in the previous step.
Because vtables are not always referenced directly, the analysis searches for the following
different reference methods:

1. A direct reference to the start of the function entries in the vtable. This is the most
common case.

2. A reference to the beginning of the metadata fields in the vtable. This is mostly
used by applications compiled with position-independent code (e.g., MySQL server
which additionally uses virtual inheritance).

3. An indirect reference through the GOT. Here, the address to the vtable is loaded
from the GOT.

Starting from the identified references, we track the data flow through the code (using
Static Single Assignment (SSA) form [45]) to the instructions that write the vtblptrs during
object initialization or destruction. We later instrument these instructions, adding code
that stores the vtblptr in a safe memory region. Our approach is agnostic to the location
the C++ object resides in (i.e., heap, stack, or global memory). Furthermore, since we
focus on references from code to the vtables, our approach can handle explicit constructor
functions as well as inlined constructors and destructors.

During our research, we encountered functions with inlined constructors where the com-
piler emits code that stores the vtblptr temporarily in a stack variable to use it at multiple
places in the same function. Therefore, to ensure that we do not miss any vtblptr write
instructions, our algorithm continues to track the data flow even after a vtblptr is written
into a stack variable. Because we cannot easily distinguish between a temporary stack
variable and an object residing on the stack, our algorithm also assumes that the tempo-
rary stack variable is a C++ object. While this overestimates the set of C++ objects, it
ensures that we instrument all vtblptr write instructions, making this overapproximation
comprehensive.
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5.3.3 Analysis: Virtual Callsite Identification

Because vps specifically protects vcalls against control-flow hijacking, we first have to
locate them in the target binary. Hence, we have to differentiate between vcalls and
normal C-style indirect call instructions. We follow a two-stage approach to make this
distinction: we first locate all possible vcall candidates and subsequently verify them.
The verification step consists of a static analysis component and a dynamic one. In the
following, we explain this analysis in detail.

5.3.3.1 Virtual Callsite Candidates

To find virtual callsite candidates, we use a similar technique as previous work [55,63,127,
165]. We search for the vcall pattern described in Section 2.2.4, where the thisptr is the
first argument (stored in the RDI register on Linux x86-64) to the called function and the
vcall uses the vtblptr to retrieve the call target from the vtable. Note that the thisptr is
also used to extract the vtblptr for the call instruction. A typical vcall looks as follows:

mov RDI, thisptr

mov vtblptr, [thisptr]

call [vtblptr + offset]

Note that these instructions do not have to be consecutive in the application, but can
be interspersed with other instructions. Two patterns can be derived from this sequence:
the first argument register always holds the thisptr , and the call instruction target can be
denoted as [[thisptr ] + offset], where offset can be 0 and therefore omitted. This
specific dependency between call target and first argument register is rare for non-C++
indirect calls. With the help of the SSA form, our algorithm traces the data flow of the
function. If the previously described dependency is satisfied, we consider the indirect call
instruction a vcall candidate.

Note that the same pattern holds for classes with multiple inheritance. As described in
Section 2.2.4, when a virtual function of a sub-vtable is called, the thisptr is moved to the
position in the object where the sub-vtable resides. Therefore, the first argument holds
thisptr + distance, and the call target [[thisptr + distance] + offset]. This still
satisfies the aforementioned dependency between first argument and call target. Further-
more, the pattern also applies to Linux ARM, Linux x86, and Windows x86-64 binaries,
requiring only a minor modification to account for the specific register or memory location
used for the first argument on the platform (R0 for ARM, the first stack argument for
Linux x86, and RCX for Windows x86-64).

To effectively protect vcalls, it is crucial to prevent false-positive vcall identifications, as
these may break the application during instrumentation. This is also required for related
work [55, 63, 127, 165]. While the authors of prior approaches report no false positives
with the above vcall identification approach, our research shows that most larger binary
programs do indeed contain patterns that result in indirect calls being wrongly classified
as virtual callsites.

A possible explanation for the lack of false positives in previous work is that most prior
work focuses on Windows x86 [63, 127, 165], where the calling conventions for vcalls and
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other call instructions differ. That is, on Windows x86, the thisptr is passed to the virtual
function via the ECX register (thiscall calling convention), while other call instructions pass
the first argument via the stack (stdcall calling convention) [58]. This is not the case for
Windows x86-64 and Linux (x86 and x86-64). On these architectures, the thisptr is passed
as the first argument in the platform’s standard calling convention (Microsoft x64, cdecl
and System V AMD64 ABI, respectively). While Elsabagh et al. [55], who work on Linux
x86, did not report false positives, our evaluation does show false positives in the same
application set. We contacted the authors, but they could not help us find an explanation
for these differing outcomes and could not give us access to the source code to allow us to
reproduce the results.

5.3.3.2 Virtual Callsite Verification

Because a single false positive can break our approach, the next phase in our static analysis
verifies the virtual callsite candidates. Basically, we perform a data-flow analysis in which
we track whether a vtblptr is used at a virtual callsite candidate. If the candidate uses the
vtblptr to determine the call target, we consider it as verified. However, a data-flow graph
alone is not sufficient to verify this connection. The control flow and actual usage of the
vtblptr have also to be considered. Figure 5.2 depicts an overview of the analysis process.
The following describes our analysis in detail.

Data-Flow Graphs First, our analysis tracks the data flow backwards with the help
of SSA form starting from all vtable references in the code (which create the vtblptr).
The data flow is tracked over function boundaries when argument registers or the return
value register RAX are involved. This means the tracking is done interprocedurally. The
same data-flow tracking is done for the call target of each virtual callsite candidate. As
Figure 5.2 a) shows, we obtain data-flow graphs showing the source of the data used by the
vtable-referencing instructions and the virtual callsite candidates. Whenever a data-flow
graph for a virtual callsite candidate has the same data source as a vtable-referencing
instruction, we group them together as depicted in Figure 5.2 b).

Control-Flow Path Virtual callsite candidates and vtable-referencing instructions that
share the same data source represent a possible connection between a created vtblptr and
a corresponding vcall. However, this connection alone does not give any information
on whether the vtblptr is actually used at the virtual callsite candidate. To verify this,
we have to check if a control-flow path exists that starts at the data-source instruction,
visits the vtable-referencing instruction, and ends at the vcall instruction. For this, our
analysis searches all possible data-flow paths through the graph that start at a data-source
instruction and end in a vtable-referencing instruction. Additionally, all data-flow paths
through the graph are identified that start at a data-source instruction and end at a virtual
callsite candidate. Then, they are split into common and unique parts as Figure 5.2 c)
depicts.

Next, our analysis tries to transform these data-flow paths into a control-flow path
by translating each data-flow node into the basic block that contains the corresponding
instruction (see Figure 5.2 d)). With the help of the Control-Flow Graph (CFG), our
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Figure 5.2: Data-flow and control-flow analysis of our vcall verification phase. Step a)
shows the data-flow graph in SSA form, with the starting node in blue (data
source). Step b) combines the data-flow graphs of a). Step c) divides the paths
through the data-flow graph into three components. Step d) shows the basic
blocks corresponding to the data-flow paths. Step e) shows a path through
the CFG containing all previously identified basic blocks.
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analysis then searches for a path from basic block to basic block until it reaches the final
block as Figure 5.2 e) shows. Eventually, if a path exists, the algorithm finds a possible
control-flow path that starts from the data-source instruction, visits the vtable-referencing
instruction, and ends at the vcall instruction.

Symbolic Execution As a last step, we symbolically execute the obtained control-flow
paths to track the flow of the vtblptr through the binary. When an instruction writes a
vtable into the memory state, we replace that vtblptr with a symbolic value. To keep the
analysis scalable to large real-world applications, our symbolic execution simply executes
basic blocks without checking whether branches can actually be taken in a concrete exe-
cution. If a basic block contains a call instruction that is not part of our original data-flow
path, we simply execute a return instruction immediately after the call instead of sym-
bolically executing the called function. When the symbolic execution reaches the vcall
instruction, we check the obtained memory state to verify that the vtblptr is used for the
call target. If so, we conclude that the vcall candidate is in fact a vcall and consider it a
verified vcall.

In addition to explicit vtable-referencing instructions, this analysis phase checks implicit
vtable references as well. In case the earlier backward data-flow analysis shows that a
vcall target stems from the first argument register, we check whether the calling function
is a known virtual function (by checking whether the function resides in any previously
identified vtable). If it is, we add a special virtual function node to the data-flow graph.
We then search for a path from this virtual function node to the vcall instruction. If a
path is found, we apply the steps described previously for transforming the data-flow path
to a control-flow path. For such paths, before starting the symbolic execution, we add an
artificial memory object containing the vtblptr and place the thisptr in the first argument
register. This way, we simulate an implicit use of the vtable through the initialized object.

We perform the whole vcall verification analysis in an iterative manner. When the
data-flow tracking step stops at an indirect call instruction, we repeat it as soon as our
analysis has verified the indirect call as a vcall and has therefore found corresponding
vtables for resolving the target. The same applies to data-flow tracking that stops at the
beginning of a virtual function (because no caller is known). As soon as we can determine
a corresponding vcall instruction, we repeat the analysis. The analysis continues until we
reach a fixed point where the analysis fails to find any new results.

5.3.3.3 Dynamic Profiling

Our approach includes a dynamic profiling phase that further refines the vcall verifica-
tion. During this phase, we execute the application with instrumentation code added to
all virtual callsite candidates (only the vcall candidates, not the already verified vcalls).
Whenever the execution reaches a vcall, the instrumentation code verifies that the first
argument contains a valid thisptr . To verify this, we check if the first element of the object
the thisptr points to contains a valid pointer to a known vtable (vtblptr). If it does, we
consider the vcall verified. Otherwise, we regard the vcall as a false positive of the static
analysis and discard it.
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Because this phase only instruments vcall candidates identified by the static analysis
described in Section 5.3.3.1, it is safe to assume the dependency between first argument
and call instruction target. Hence, the above dynamic profiling check is sufficient to remove
false positives seen during the profiling run, given that the odds of finding a C-style indirect
callsite with such a distinctive pattern that uses C++ objects is extremely unlikely. We
did not encounter any such case during our comprehensive evaluation. Also note, that only
this dynamic analysis step discards vcall candidates as false positives. Vcalls that could
not be verified by the static analysis (or not reached during this dynamic profiling) are
still considered vcall candidates since the reason for the failed verification can be missing
information (e.g., analysis gaps through indirect control-flow transfers).

5.3.4 Instrumentation: Object Initialization and Destruction

We use the data collected in Section 5.3.2 to instrument object initialization, specifically
the instruction that writes the vtblptr into the object. When an object is created, the
instrumentation code stores a key-value pair that uses the memory address of the object
as the key and maps it to the vtblptr , which is the associated value. To prevent tampering
with this mapping, we store it in a safe memory region.

Recall that during the creation of a C++ object whose class inherits from another class,
the initialization code first writes the vtblptr of the base class into the object, which is then
overwritten by the vtblptr of the derived class. Our approach is agnostic to inheritance
and simply overwrites the vtblptr in the same order (because each vtblptr write instruction
is instrumented).

Similarly, our approach is agnostic to multiple inheritance, because object initialization
sites use the address where the vtblptr is written as the object address. As explained in
Section 2.2.4, at a virtual callsite the thisptr points to the address of the object the used
vtblptr resides in. For a sub-vtable, this is not the beginning of the object, but an offset
somewhere in the object (in our running example in Figure 2.3 in Chapter 2 offset 0x10).
Because this is exactly the address that our approach uses as the key for the safe memory
region, our approach works for multiple inheritance without any special handling.

Since this instrumentation only focuses on vtblptr write instructions, it is also agnostic
to object initialization and destruction. Hence, we do not have to differentiate between
constructor and destructor and can use it for both.

Moreover, despite the fact that we ignore object deletion, our approach does not suffer
from consistency problems. This is because, when an object is deleted and its released
memory is reused for a new C++ object, the instrumentation code for the initialization
of this new object automatically overwrites the old value in the safe memory region with
the current vtblptr .

5.3.5 Instrumentation: Virtual Callsites Instrumentation

Because a single false-positive virtual callsite can break the application, we designed the
vcall instrumentation code such that it can detect false positives and filter them out. In
doing so, the vcall instrumentation continuously refines the previous analysis results. The

85



Chapter 5 Excavating C++ Constructs from Binaries to Protect Dynamic Dispatching

vcall instrumentation consists of two components, described next: Analysis Instrumenta-
tion and Security Instrumentation.

5.3.5.1 Analysis Instrumentation

We add analysis instrumentation code to all vcall candidates that we were unable to verify
during our static vcall verification and dynamic profiling analysis. For verified vcall sites,
we only add security instrumentation and omit the analysis code.

Before executing a vcall candidate, the analysis instrumentation performs the same check
as the dynamic profiling phase described in Section 5.3.3.3. If the check fails, meaning
that this is not a vcall but a regular C-style indirect call, we remove all instrumentation
from the call site. If the check succeeds, we replace the analysis instrumentation with
the more lightweight security instrumentation for verified virtual callsites described in
Section 5.3.5.2, and immediately run the security instrumentation code.

Through our use of adaptive instrumentation, our approach is able to cope with false
positives and further refine the analysis results during runtime. By caching the refined
results on disk, we can reuse these in later runs of the same application, improving vps’s
performance over time. Furthermore, caching also improves the security of our adaptive
instrumentation as we discuss in Section 5.6.2.

Because the analysis instrumentation verifies all remaining vcall candidates for false
positives at runtime, the static vcall verification from Section 5.3.3.2 and the dynamic
profiling from Section 5.3.3.3 can be omitted. Omitting these steps does not affect the
correctness of our approach, although we recommend using them for optimal performance.

5.3.5.2 Security Instrumentation

We protect verified vcall sites against control-flow hijacking by adding security instrumen-
tation code that runs before allowing the vcall. The instrumentation uses the thisptr in
the first argument register to retrieve the vtblptr stored for this object in the safe mem-
ory region. To decide whether to allow the vcall, the instrumentation code compares the
vtblptr from the safe memory region with the one stored in the actual object used in the
vcall. If they are the same, the instrumentation allows the vcall. If not, we terminate with
an alert.

5.4 Implementation

Based on the approach from Section 5.3, we integrated our static analysis into the open
source Marx framework presented in Chapter 4. This framework provides a basic symbolic
execution based on the VEX-IR from the Valgrind project [51] and data structures needed
for C++ binary analysis. It is written in C++ and targets Linux x86-64 (amd64) binaries.
To support integration of our approach into the Marx framework, we added support for
SSA and a generic data-flow tracking algorithm.

Because the VEX-IR supports multiple architectures, the framework is easily extendable
to these. The same is true for our approach, which is mostly independent from the
underlying architecture (Section 5.3). To balance precision and scalability, the symbolic
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execution emulates only a subset of the 64-bit VEX instructions that suits our focus on
vtable-centered data-flow tracking in real-world applications.

We use IDAPython [79] for vtable identification and CFG extraction. Additionally,
we use instruction data provided by IDA Pro [78] to support the SSA transformation,
and use Protocol Buffers [70] to export the results in a programming language–agnostic
format. We implement dynamic profiling with Pin [104]. We build the runtime component
of vps on top of Dyninst v9.3.2 [17]. Dyninst is responsible for installing vtblptr write
and (candidate) virtual callsite hooks. We inject these wrappers into the target program’s
address space by preloading a shared library.

To set up the safe memory region, our preloaded library maps the lower half of the
address space as a safe region at load time; this is straightforward for position-independent
executables as their segments are mapped exclusively in the upper half of the address space
by default. To compute safe addresses, we subtract 64 TB1 from the addresses used by
vtblptr writes or virtual calls. To thwart value probing attacks in the safe region, we (i)
mark all safe region pages as inaccessible by default and make them accessible on demand,
and (ii) use a fixed offset chosen randomly at load time for writes to the safe region. To
achieve the latter, we write a random value to the gs register and use it as the offset for
all accesses to the safe region. To mark pages as readable/writable on demand, we use
a custom segfault handler that uses mprotect to allow accesses from our library. This
means that when a vtblptr is written into the safe memory region and the page is not
yet accessible, our segfault handler checks if the write access is done by our library and
makes the page accessible if it is. Otherwise, a probing attack is detected and execution
is stopped. The page remains accessible which speeds up further vtblptr writes to it.

We omit an evaluation of potential optimizations already explored in prior work [26,93],
such as avoiding Dyninst’s penalties for (re)storing unclobbered live registers or removing
trampoline code left over after nopping out analysis instrumentation code. Similarly,
we do not implement hash-based safe region compression that would reduce virtual and
physical memory usage and allow increased entropy in the safe region, nor do we use
Intel MPK [40] to further secure the safe region. Since we focus on the exact analysis of
binary applications and the subsequent instrumentation, we consider these optimizations
orthogonal to our work.

5.5 Evaluation

In this section, we evaluate vps in terms of performance and accuracy. We focus our
evaluation on MySQL, Node.js, MongoDB, and the fifteen C++ benchmarks found in
SPEC CPU2006 and CPU2017 [141, 142]. Even though our approach is able to handle
proprietary software, we evaluate it on open-source software since otherwise, we are not
able to generate a ground truth to compare against.

1Linux x86-64 provides 47 bits for user space mappings, and 247 = 128TB.
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5.5.1 Virtual Callsite Identification Accuracy

In order to measure the accuracy of the protection of vps, we evaluate the accuracy of the
vcall identification analysis. The results show that vps, although a binary-only approach,
can almost reach the same degree of protection as a source-based approach. Compared
to the state-of-the-art binary-only approach Marx , it identifies more vcalls with fewer
false-positives. As applications for our evaluation, we use the C++ programs of SPEC
CPU2006 and SPEC CPU2017 that contain virtual callsites, as well as the MySQL server
binary (5.7.21), the Node.js binary (8.10.0), and the MongoDB binary (3.2.4). We used
the default optimization levels (O2 for CPU 2006, O3 for all others). The analysis was
performed on Ubuntu 16.04 LTS running on an Intel Core i7-2600 CPU with 32 GB of
RAM.

VTV To gain a ground truth of virtual callsites, we use VTV [149] and compare against
our analysis results. Since VTV leverages source code information, its results are usually
used as ground truth for binary-only approaches focusing on C++ virtual callsites. All
programs except MongoDB are compiled with GCC 8.1.0. MongoDB crashed during
compilation and had to be compiled with the older version GCC 4.9.3. Unfortunately,
compiling 450.soplex results in a crash and it is therefore omitted. Table 5.1 shows the
results of our vcall accuracy evaluation.

Overall, we observe that the analysis of vps is capable of identifying the vast majority of
virtual callsites in the binary. This ranges from 91.7% (510.parest r) to all vcalls detected
(several benchmarks). Our average recall is 97.8% on SPEC CPU2006 and 97.4% on
SPEC CPU2017. With the exception of one outlier (526.blender r with precision 68.3%)
we have a low number of false positives, with precision ranging from 87.0% (447.dealII )
to no false positives at all (several benchmarks). The results are similar for large real-
world applications with a recall ranging from 91.8% (MongoDB) to 97.6% (MySQL) and a
precision ranging from 97.2% (Node.js) to 99.7% (MongoDB). The high recall rate shows
that our binary-only approach is able to protect almost as many virtual callsites as VTV
does and hence provides comparable security as this source-based approach. However, it
still misses some vcalls which may leave an attacker with a small room to perform an
attack under the right circumstances. The precision rates show that although we have a
low false-positive identification rate, we still have some.

To cope with the problem of false-positive identifications, we verify vcalls before we
actually instrument them with our security check. The static analysis verification is able
to verify 37.9% in the best case (526.blender r) and in the worst case none. On average we
verified 20.4% on SPEC CPU2006 and 18.3% on SPEC CPU2017. For large applications,
the best verification rate is 12.2% (Node.js) and the worst 3.1% (MongoDB). Dynamic
verification (see Section 5.3.3.3) considerably improves verification performance, verifying
35.1% and 25.9% for SPEC CPU2006 and 2017. Unfortunately, we were not able to
execute 510.parest r, MySQL and MongoDB with VTV. The applications crashed with
an error message stating that VTV was unable to verify a vtable pointer (i.e., a false
positive). Hence, the only large real-world application with dynamic verification Node.js
verified 20.2% of the vcalls.
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Table 5.1: Results of our vcall accuracy evaluation. For each application this table shows
(i) the code size, time needed for the static analysis (hh:mm:ss) and the ground
truth generated by VTV ; (ii) static vcall identification, depicting the number
of indirect call instructions identified as vcall that are true positives and false
positives as well as recall and precision; (iii) static vcall verification results,
listing the number of verified vcall instructions, verified vcalls in percentage and
verified false positives; (iv) static and dynamic verification results, showing the
number of verified vcall instructions, verified vcalls in percentage, verified false
positives, and the number of identified false positives removed. Cases where
dynamic verification failed due to VTV false positives are in parentheses.

Static Identification

Program Code Size Time #GT #TP #FP Recall (%) Precision (%)

447.dealII 4.18 MB 0:02:15 1,558 1,450 215 93.0 87.1
450.soplex – – – – – – –
453.povray 1.09 MB 0:00:04 102 102 10 100.0 91.1
471.omnetpp 1.17 MB 0:04:00 802 800 0 99.8 100.0
473.astar 0.04 MB 0:00:00 1 1 0 100.0 100.0
483.xalancbmk 7.17 MB 5:54:25 13,440 12,915 17 96.1 99.9

Average [SPEC CPU2006] 97.8 95.6

510.parest r 12.69 MB 1:00:00 4,678 4,288 528 91.7 89.0
511.povray r 1.20 MB 0:00:05 122 122 14 100.0 89.7
520.omnetpp r 3.60 MB 0:06:57 6,430 6,190 23 96.3 99.6
523.xalancbmk r 10.34 MB 15:20:40 33,880 33,069 12 97.6 100.0
526.blender r 11.47 MB 0:03:29 174 172 80 98.9 68.3
541.leela r 0.33 MB 0:00:01 1 1 0 100.0 100.0

Average [SPEC CPU2017] 97.4 91.1

MongoDB 48.22 MB 1:57:39 17,836 16,366 44 91.8 99.7
MySQL 35.95 MB 65:57:27 11,876 11,592 179 97.6 98.5
Node.js 38.13 MB 5:16:09 12,643 12,330 353 97.5 97.2

Static Verification Static and Dynamic Verification

Program # % #FP # % #FP #removed

447.dealII 379 24.3 7 423 27.2 18 0
450.soplex – – – – – – –
453.povray 32 31.4 0 55 53.9 0 6
471.omnetpp 245 30.6 0 530 66.1 0 0
473.astar 0 0.0 0 0 0.0 0 0
483.xalancbmk 2,122 15.8 0 3,792 28.2 1 0

Average [SPEC CPU2006] 20.4 35.1

510.parest r 660 14.1 13 (660) (14.1) (13) –
511.povray r 33 27.1 0 62 50.8 0 6
520.omnetpp r 1,585 24.7 0 2,286 35.6 6 0
523.xalancbmk r 1,948 5.8 0 4,961 14.6 0 0
526.blender r 66 37.9 0 70 40.2 0 49
541.leela r 0 0.0 0 0 0.0 0 0

Average [SPEC CPU2017] 18.3 25.9

MongoDB 552 3.1 0 (552) (3.1) (0) –
MySQL 1,330 11.2 3 (1,330) (11.2) (3) –
Node.js 1,538 12.2 10 2,559 20.2 45 118
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92 /**

93 * Destroy the object pointed to by a pointer type.

94 */

95 template<typename _Tp>

96 inline void

97 _Destroy(_Tp* __pointer)

98 { __pointer->~_Tp(); }

(a) Snippet from stl construct.h.

2545 Vector<double> us[dim];

2546 for (unsigned int i=0; i<dim; ++i)

2547 us[i].reinit (dof_handler.n_dofs());

(b) Snippet from grid generator.cc.

Figure 5.3: Two source code snippets where VTV fails to identify a virtual callsite.

A manual analysis of the missed virtual callsites (false negatives) reveals two possibilities
for a miss: the data flow was too complex to be handled correctly by our implementation,
or the described pattern in Section 5.3.3.1 was not used. The former can be fixed by
improving the implemented algorithm that is used for finding the described pattern. In
the latter, the vtblptr is extracted from the object, however, a newly-created stack object
is used as thisptr for the virtual callsite which does not follow a typical C++ callsite
pattern. This could be addressed by considering additional vcall patterns, at the risk of
adding false positives. Given our already high recall rates, we believe this would not be a
favorable trade-off.

We also verified 86 cases which VTV did not recognize as virtual callsite instructions.
A manual verification of all cases show that these are indeed vcall instructions and hence
missed virtual callsites by VTV. For example, Figure 5.3a depicts the relevant code for
34 of these cases that are linked to the compiler provided file stl construct.h. Line
98 provides the missed vcall instruction that calls the destructor of the provided object.
Since the destructor of a class is also a virtual function, it is invoked with the help of
a virtual callsite. Another example is given in Figure 5.3b for 510.parest r. Here, a
vector is created and the function reinit() is invoked on line 2547. However, since the
class dealii::Vector<double> is provided by the application and reinit() is a virtual
function of this class, this function call is translated into a virtual callsite. We contacted
the VTV authors about this issue and they confirmed that this happens because the
compiler accesses the memory of the objects directly when calling the virtual function in
the internal intermediate representation. Usually, the compiler accesses them while going
through an internal vtblptr field. Unfortunately, to fix this issue in VTV would require a
lot of non-trivial work since the analysis has to be enhanced.

CFIXX Since CFIXX performs the enforcement in a similar way, we also evaluated our
binary-only approach against this source code based method. Hence, we compiled the
applications with CFIXX which is based on LLVM and extracted the protected virtual
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Table 5.2: Results of our comparison against CFIXX. For each application this table shows
(i) the ground truth generated by CFIXX ; (ii) static vcall identification, de-
picting the number of indirect call instructions identified as vcall that are true
positives and false positives as well as recall and precision.

Static Identification

Program #GT #TP #FP Recall (%) Precision (%)

447.dealII – – – – –
450.soplex 553 553 10 100.0 98.2
453.povray 110 110 11 100.0 90.9
471.omnetpp 943 942 0 99.9 100.0
473.astar 1 1 0 100.0 100.0
483.xalancbmk 12,670 12,427 527 98.0 95.9

Average [SPEC CPU2006] 99.6 97.0

510.parest r 7,288 7,194 265 98.7 96.5
511.povray r 119 119 11 100.0 91.5
520.omnetpp r 6,037 6,032 71 99.9 98.8
523.xalancbmk r 23,661 26,407 528 98.9 97.8
526.blender r – – – – –
541.leela r 2 2 0 100.0 100.0

Average [SPEC CPU2017] 99.5 96.9

MongoDB 20,873 20,716 448 99.3 97.9
MySQL 13,035 12,921 380 99.1 97.1
Node.js 13,013 12,982 491 99.8 96.4
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Table 5.3: Results of Marx ’s vcall accuracy evaluation. For each application this table
shows (i) the ground truth generated by VTV ; (ii) static vcall identification,
depicting the number of indirect call instructions identified as vcall that are
true positives and false positives as well as recall and precision.

Static Identification

Program #GT #TP #FP Recall (%) Precision (%)

447.dealII 1,558 1,307 122 83.9 91.5
450.soplex – – – – –
453.povray 102 98 10 96.1 90.7
471.omnetpp 802 701 3 87.4 99.6
473.astar 1 1 0 100.0 100.0
483.xalancbmk – – – – –

Average [SPEC CPU2006] 91.8 95.4

510.parest r 4,678 3,673 295 78.5 92.6
511.povray r 122 115 11 94.3 91.3
520.omnetpp r 6,430 5,465 22 85.0 99.6
523.xalancbmk r 33,880 23,541 33 69.4 99.9
526.blender r 174 171 1,347 98.3 11.3
541.leela r 1 0 0 0.0 0.0

Average [SPEC CPU2017] 70.9 65.8

MongoDB 17,836 12,437 1,249 69.7 90.9
MySQL 11,876 10,867 1,214 81.3 88.8
Node.js 12,643 10,648 1,095 84.2 90.7

callsites as ground truth for our comparison. Table 5.2 shows the results of this evaluation.
Unfortunately, we were not able to compile 447.dealII and 526.blender r with CFIXX. As
the table shows, vps can identify on average 99.6% of all SPEC CPU2006 and 99.5% of
SPEC CPU2017 virtual callsites that are also protected by CFIXX. Furthermore, vps also
yields a high precision with 97.0% for SPEC CPU2006 and 96.9% for SPEC CPU2017 on
average. For large real-world applications, the recall and precision rates are similar with
a recall of 99.1% for MySQL and 99.8% for Node.js and a precision of 97.1% and 96.4%
respectively. A manual analysis of the missed virtual callsites (false negatives) showed the
same two reasons for a miss that also occurred for VTV.

Marx A direct comparison of the accuracy with other binary-only approaches is difficult
since different test sets are used to evaluate it. For example, vfGuard evaluates the
accuracy of their approach against only two applications, while T-VIP is only evaluated
against one. VTint states absolute numbers without any comparison with a ground truth.
VCI evaluates their approach against SPEC CPU2006, but the numbers given for the
ground truth created with VTV differ completely from ours (e.g., 9,201 vs. 13,440 vcalls
for 483.xalancbmk) which makes a comparison difficult. Additionally, the paper reports no
false positives during their analysis which we encounter in the same application set with
a similar identification technique. Unfortunately, as discussed in Section 5.3.3.1, we were
not able to determine the reason for this. Furthermore, most approaches target different
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Table 5.4: Object creation and destruction accuracy results, showing the number of vtable
references in the code as found in the ground truth and as identified or missed
by our analysis.

Program #GT #identified #missed

447.dealII – – –
450.soplex 102 228 0
453.povray 103 226 0
471.omnetpp 372 871 0
473.astar 0 8 0
483.xalancbmk 2,918 6,530 0

510.parest r 12,482 25,804 0
511.povray r 103 224 0
520.omnetpp r 1,381 3,280 0
523.xalancbmk r 2,790 6,323 0
526.blender r – – –
541.leela r 87 180 0

MongoDB 8,054 11,401 0
MySQL 8,532 11,524 0
Node.js 7,816 19,204 0

platforms than vps (Windows x86 and Linux x86) and are not open source. Since Marx is
the only open-source approach that targets the same platform, we analyzed our evaluation
set with it. In order to create as few false positives as possible, we used its conservative
mode. Unfortunately, Marx crashed during the analysis of 483.xalancbmk. The results of
the analysis can be seen in Table 5.3. Compared to Marx , vps’ analysis has considerably
higher recall with better precision. Averaged over the CPU2006 benchmarks supported by
Marx , vps achieves 98.2% recall (91.8% for Marx ) and on CPU2017 97.4% versus 70.9%,
respectively. This does not come at the cost of more false positives, as our precision is
similar on CPU2006 (94.5% vs. 95.4%) and much better on CPU2017 (91.1% vs. 65.8%).
For large real-world applications like MySQL and MongoDB, vps identifies 16.3% and
28.1% more virtual callsites with better precision (98.5% vs. 88.8% for MySQL and 99.7%
vs. 90.9% for MongoDB).

Overall, our analysis shows that vps is precise enough to provide an application with
protection against control-flow hijacking attacks at virtual callsites. The evaluation showed
that on average only 2.5% when comparing against VTV and 0.5% comparing against
CFIXX of the vcalls were missed. Since binary analysis is a hard problem, the results are
very promising in showing that a sophisticated analysis can almost reach the same degree
of protection as a source-based approach. In addition, it shows that even source-code
approaches such as VTV do not find all virtual callsite instructions and can benefit from
binary-only approaches such as vps. Furthermore, the number of false positives show the
sensibility of our approach to handle them during instrumentation rather than assume
their absence.
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5.5.2 Object Initialization/Destruction Accuracy

To avoid breaking applications, vps must instrument all valid object initialization
and destruction sites. To ensure that this is the case, we compare the number of
vtable-referencing instructions found by vps to a ground truth. We generate the
ground truth with an LLVM 4.0.0 pass that instruments Clang’s internal function
CodeGenFunction::InitializeVTablePointer(), which Clang uses for all vtable
pointer initialization.

Table 5.4 shows the results for the same set of applications we used in Section 5.5.1.
We omit results for 447.dealII from SPEC CPU 2006 and 526.blender r from SPEC CPU
2017 because these benchmarks fail to compile with LLVM 4.0.0. The results for the re-
maining applications show that our analysis finds all vtable-referencing instructions. It
conservatively overestimates the set of vtable-referencing instructions, ensuring the secu-
rity and correctness of vps at the cost of a slight performance degradation due to the
overestimated instruction set.

5.5.3 Performance

This section evaluates the runtime performance of vps by measuring the time it takes to
run each C++ benchmark in SPEC CPU2006 and CPU2017. We compare vps-protected
runtimes against the baseline of original benchmarks without any instrumentation. We
compile all test cases as position-indepedent executables with GCC 6.3.0. For each bench-
mark, we report the median runtime over 11 runs on a Xeon E5-2630 with 64 GB RAM,
running CentOS Linux 7.4 64-bit. We use a single additional run with more logging en-
abled to obtain statistics such as the number of executed virtual calls. Table 5.5 details
our results.

Our results show the variety in properties of C++ applications. Some programs make
little to no use of virtual dispatching, e.g., 444.namd, 508.namd r, 531.deepsjeng r,
and 473.astar. Others contain thousands of vtblptr writes and virtual callsites, e.g.,
510.parest r with over 12,000 vtblptr writes, or 483.xalancbmk in CPU2006 with more
than 1,300 verified virtual callsites. Further details are shown in the first group in
Table 5.5.

The comparison of verified virtual calls (true positive) and regular indirect calls (false
positive) shows the accuracy of our analysis. Almost all vcall candidates turn out to be
real vcalls. Furthermore, with absolute numbers of executed virtual calls and vtblptr writes
in the billions, it is clear that our instrumentation must be lightweight. The second group
in Table 5.5 depicts the exact numbers.

The runtime overhead of our instrumentation varies from 0% for programs with little to
no virtual dispatch code to 35% for the worst-case scenario (483.xalancbmk). In almost
all cases, we see a correlation between increased overhead and number of instrumentation
points (vtblptr writes and virtual calls). An exception is 511.povray r, which shows a 15%
performance decrease despite a relatively low number of vcalls and vtblptr writes. Further
inspection shows that this is caused by the 6 false positives candidate vcalls; if we disable
hot-patching, our vcall instrumentation code is called over 18 billion times. While we
remove instrumentation hooks for the majority of these cases, which are not real vcalls,
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Table 5.5: vps performance results and runtime statistics. For each binary, this table
shows (i) binary instrumentation details, depicting the number of instru-
mented vtblptr writes (#vtblptr), positive virtual calls (#positive), and can-
didate vcalls (#candidates); (ii) runtime statistics, listing the number of
true positive (#TP) and false positive (#FP) virtual calls, and the total num-
ber of virtual calls (#vcalls) and vtblptr writes (#vtblptr); and (iii) runtime
overhead, listing runtime overhead (vps) compared to the baseline (base) in
seconds.

Binary instrumentation Runtime statistics Runtime overhead
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444.namd 6 0 2 0 0 0 2,018 343.5 342.9 (+ 0%)
447.dealII 4,283 161 1,459 47 0 97m 21m 289.7 299.2 (+ 3%)
450.soplex 120 195 364 48 0 1,665,968 40 215.8 220.2 (+ 2%)
453.povray 98 21 91 21 6 101,743 162 135.8 153.3 (+13%)
471.omnetpp 507 117 677 327 0 1,585m 2,156m 290.0 370.2 (+28%)
473.astar 0 0 1 0 0 0 0 350.3 351.6 (+ 0%)
483.xalancbmk 4,554 1,348 11,623 1,639 0 3,822m 2,316m 185.0 249.4 (+35%)

Geometric mean [SPEC CPU2006] + 11%

508.namd r 48 0 0 0 0 0 21 271.8 271.8 (+ 0%)
510.parest r 12,206 243 4,539 350 4 2,625m 119m 586.3 603.1 (+ 3%)
511.povray r 113 19 121 21 6 4,577 183 498.7 572.0 (+15%)
520.omnetpp r 2,591 447 5,310 751 0 7,958m 2,070m 507.4 661.7 (+30%)
523.xalancbmk r 4,512 801 30,771 2,844 0 4,873m 2,314m 366.8 461.5 (+26%)
526.blender r 43 37 174 4 46 11 3 325.8 328.6 (+ 1%)
531.deepsjeng r 0 0 0 0 0 0 0 345.1 353.1 (+ 2%)
541.leela r 177 0 2 0 0 0 404,208 535.5 534.6 (+ 0%)

Geometric mean [SPEC CPU2017] + 9%
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Figure 5.4: Normalized runtime for C++ programs in SPEC CPU2006 and CPU2017,
with cumulative configurations: (i) only instrument vtblptr writes; (ii) also
instrument virtual call instructions; (iii) secure the safe region by marking all
pages unwritable, and only selectively mprotect-ing them if they are accessed
from our own instrumentation code; and (iv) include offline dynamic analysis
results, reducing the need for hot-patching.
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our current implementation does not remove the Dyninst trampolines. These trampolines
are the source of the unexpected overhead. The numbers depicting the comparison of
the uninstrumented baseline runs to vps-protected runs are shown in the third group in
Table 5.5.

To better understand the overhead of vps, we gathered detailed statistics for both
SPEC CPU2006 and SPEC CPU2017 in varying configurations. We first run SPEC with
only instrumentation for vtblptr writes enabled. In this run, the entire safe region is
read/writable and the instrumentation only (i) computes the address in the safe region
to store the vtable pointer at, and (ii) copies the vtable pointer there. In the second
configuration, we additionally instrument virtual calls. We check whether candidates are
actual vcalls by testing the call’s first argument and, if it can be dereferenced, looking
this value up in the list of known vtables. We then either patch verified vcalls to enable
the fast path, or remove instrumentation for false positives. The fast path fetches the
vtable pointer by dereferencing the first argument, and then compares it against the value
stored in the safe region. The third configuration additionally makes the safe region read-
only and uses a segfault handler to mark pages writable on demand. Finally, the fourth
configuration includes dynamic analysis results, removing the need to hot-patch previously
verified vcalls at runtime. The results show that the majority of vps’s overhead stems
from (i) vtblptr writes, and (ii) virtual callsite instrumentation. Figure 5.4 details the
numbers of this evaluation.

Overall, with a geometric mean performance overhead of 11% for SPEC CPU2006 and
9% for SPEC CPU2017, vps shows a moderate performance impact. As expected, it does
not perform as well as a source-based approach such as VTV with reported 4% geometric
mean for SPEC CPU2006 [149]. However, it outperforms comparable previous work (VCI
with 14% [55] and T-VIP with 25% [63]) and performs slightly worse than Marx ’s VTable
Protection with a reported 8% geometric mean for SPEC CPU2006, however, with better
accuracy and additional type integrity.

5.6 Discussion

This section first discusses the susceptibility of vps to COOP attacks [135]. Next, we
discuss the limitations of vps.

5.6.1 Counterfeit Object-oriented Programming

CFI approaches targeting C++ must cope with advanced attackers using Counterfeit
Object-oriented Programming (COOP) attacks [44, 135]. This attack class thwarts de-
fenses that do not accurately model C++ semantics. As we argue below, vps reduces the
attack surface sufficiently that practical COOP attacks are infeasible.

For a successful COOP attack, an attacker must control a container filled with objects,
with a loop invoking a virtual function on each object. The loop may be an actual
loop, called a main loop gadget, or can be achieved through recursion, called a recursion
gadget. We refer to both types as loop gadget. The attacker places counterfeit objects in
the container, allowing them to hijack control flow when the loop executes each object’s
virtual function. To pass data between objects, the attacker can overlap the objects’ fields.

97



Chapter 5 Excavating C++ Constructs from Binaries to Protect Dynamic Dispatching

The first restriction vps imposes on an attacker is to prevent filling the container with
counterfeit objects; because the objects were not created at legitimate object creation
sites, the safe memory does not contain stored vtblptrs for them. An attacker has only two
options to craft a container of counterfeit objects under vps: either the program allows
attackers to arbitrarily invoke constructors and create objects, or the attacker can coax the
program into creating all objects needed on their behalf. The former occurs (in restricted
form) only in programs with scripting capabilities. The latter scenario, besides requiring a
cooperative victim program, hinges on the attacker’s ability to scan data memory to find
all needed objects without crashing the program (hence losing the created objects) and
filling the container with pointers to these.

The second restriction is prohibiting overlapping objects (used for data transfer in
COOP), since objects can only be created by legitimate constructors. As a result, a
COOP attack would have to pass data via argument registers or scratch memory instead.
Data passing via argument registers works only if the loop gadget does not modify the
argument registers between invocations. Moreover, the virtual functions called must leave
their results in the correct argument registers when they return. Passing data via scratch
memory limits the attack to the use of virtual functions that work on memory areas. The
pointer to the scratch memory area must then be passed to the virtual function gadgets
either via an argument register (subject to the earlier limitations), or via a field in the
object. To use a field in the object as a pointer to scratch memory, the attacker must
overwrite that field prior to the attack, which could lead to a crash if the application tries
to use the modified object.

As a third restriction, vps’s checks of the vtblptr at each vcall instruction limit the virtual
functions attackers can use at a loop gadget. Only the virtual function at the specific vtable
offset used by the vcall is allowed; attackers cannot “shift” vtables to invoke alternative
entries. This security policy is comparable to vfGuard [127].

To summarize, vps restricts three crucial COOP components: object creation, data
transfer, and loop gadget selection. Because all proof of concept exploits by Schus-
ter et al. [135] rely on object overlapping as a means of transferring data, vps successfully
prevents them. Moreover, Schuster et al. recognize vfGuard as a significant constraint for
an attacker performing a COOP attack. Given that vps raises the bar even more than
vfGuard, we argue that vps makes currently existing COOP attacks infeasible.

We found that multiple of the virtual callsites missed by VTV (as shown in Section 5.5.1)
reside in a loop in a destructor function (similar to the main loop gadget example used
by Schuster et al. [135]). Because the loop iterates over a container of objects and uses a
virtual call on each object, COOP attacks can leverage these missed callsites as a main
loop gadget even with VTV enabled. This demonstrates the need for defense-in-depth,
with multiple hurdles for an attacker to cross in case of inaccuracies in the analysis.

5.6.2 Limitations

At the moment, our proof of concept implementation of the instrumentation ignores object
deletion because it does not affect the consistency of the safe memory. As a result, when
an object is deleted, its old vtblptr is still stored in safe memory. If an attacker manages
to control the memory of the deleted object, they can craft a new object that uses the
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same vtable as the original object. Because the vtblptr remains unchanged, this attack is
analogous to corrupting an object’s fields and does not allow the attacker to hijack control.
Thus, while our approach does not completely prevent use-after-free, it forces an attacker
to re-use the type of the object previously stored in the attacked memory.

Another limitation of our approach lies in the runtime verification of candidate vcall
sites. If an attacker uses an unverified vcall instruction, they can force the analysis in-
strumentation to detect a “false positive” vcall and remove the security instrumentation
for this instruction, leaving the vcall unprotected. Because we cache analysis results, this
attack only works for vcall sites that are unverified in the static analysis and have never
been executed before in any run of the program (since otherwise only the security check
is performed), leading to a race condition between the analysis instrumentation and the
attacker. The only way to mitigate this issue is by improving coverage during the dy-
namic profiling analysis and therefore reducing the number of unverified vcalls. This is
possible by running test cases for the protected program or through techniques such as
fuzzing [77, 130]. Note also that this attack requires specific knowledge of an unverified
vcall; if the attacker guesses wrong and attacks a known vcall, we detect and log the
attack.

vps inherits some limitations from Dyninst, such as Dyninst’s inability to instrument
functions that catch or throw C++ exceptions and Dyninst’s inability to instrument func-
tions for which it fails to reconstruct a CFG. These limitations are not fundamental to
vps and can be resolved with additional engineering effort.

Finally, we note that our safe memory region implementation can be enhanced to provide
stronger protection against probing attacks [68, 116]. For example, this can be done by
using hardware features such as Memory Protection Keys (MPK) [40]. In the current
implementation, an adversary might still be able to overwrite values in the safe memory
region under the right circumstances. However, because the safe region is merely a building
block for vps, we consider improvements to safe memory an orthogonal topic (e.g., [89])
and do not explore it further in this work.

5.7 Related Work

A lot of work has been presented on C++ defenses in the past. In the following, we discuss
the ones closely related to ours. Although vps is a binary-only defense, we also describe
source-based related work.

5.7.1 Binary-Only Defenses

Marx presented in Chapter 4 reconstructs class hierarchies from binaries for VTable Pro-
tection and Type-safe Object Reuse. VTable Protection verifies at each vcall whether the
vtblptr resides in the reconstructed class hierarchy. However, the analysis is incomplete
and the instrumentation falls back to PathArmor [156] for missing results. Marx ’s Type-
safe Object Reuse prevents memory reuse between different class hierarchies, reducing the
damage that can be done with use-after-free. However, this approach leaves consider-
able wiggle room for attackers for large class hierarchies. In contrast, vps does not rely on
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Table 5.6: C++ binary-only mitigation mechanisms

Defense Binary-only
Protects

vcalls
Protects

type
Protects

dangl. ptrs
Tolerates
FP vcalls

Marx (VTable) 3 3 7 3 3

Marx (Type-safe) 3 7 7 3 n.a.
vfGuard [127] 3 3 7 3 7

T-VIP [63] 3 3 7 3 7

VTint [165] 3 3 7 3 7

VCI [55] 3 3 7 3 7

VTPin [133] needs RTTI 7 7 3 n.a.

VPS 3 3 3 3 3

Defense Security Strategy

Marx (VTable) vtblptr in reconstructed class hierarchy (fallback PathArmor [156]).
Marx (Type-safe) Memory allocator uses class hierarchy as type.
vfGuard [127] Call target resides in at least one vtable at correct offset.
T-VIP [63] vtblptr and random vtable entry must point to read-only memory.
VTint [165] Verifies vtable ID, vtable must be in read-only memory.
VCI [55] vtblptr must be statically found, in class hierarchy, or vfGuard -allowed.
VTPin [133] Overwrites vtblptr when object freed.

VPS Check at vcall if object was created at a legitimate object creation site.

class hierarchy information and provides stronger security by only allowing exactly correct
types. Moreover, Marx only protects the heap whereas vps protects all objects.

VTint [165] instruments vtables with IDs to check their validity, but unlike vps allows
exchanging the original vtblptr with a new pointer to an existing vtable. Moreover, VTint
breaks the binary in case of false positives.

VTPin [133] overwrites the vtblptr whenever an object is freed to protect against use-
after-free, but it requires RTTI and does not prevent vtblptr overwrites in general.

vfGuard [127] identifies vtables and builds a mapping of valid target functions at each
vtable offset. At vcalls, it checks the target and calling convention. Unlike vps, vfGuard
allows fake vtables as long as each entry appears in a valid vtable at the same offset.
Further, vfGuard may break the binary in case of false positives.

T-VIP [63] protects vcalls against fake vtables, but breaks the binary when vtables
reside in writable memory (e.g., in .bss). Moreover, unlike vps, T-VIP uses potentially
bypassable heuristics.

VCI [55] only allows a specific set of vtables at each vcall, mimicking VTV [149]. When
the analysis cannot rebuild the sets precisely, VCI falls back to vfGuard. Moreover, false
positive virtual callsites in VCI break the application, as may incomplete class hierarchies
(e.g., due to abstract classes as described in Chapter 4). In contrast, vps allows calls
through any legitimately created object. Moreover, even in the hypothetical case of a
perfect VCI analysis, VCI allows changing the vtblptr to another one in the set, unlike
vps.

Table 5.6 shows a summary of the comparison of our design against other binary-only
C++ defenses. Overall, existing defenses targeting vtable-hijacking attacks assign a set
of allowed target functions to each virtual callsite (Marx ’s VTable Protection presented in
Section 4.4.1, vfGuard [127], T-VIP [63], VTint [165] and VCI [55]). The inaccuracy of
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binary analysis forces them to overestimate the target set, leaving room for attacks [135].
In contrast, vps enforces that vtable pointers remain unmodified after object construction,
ensuring that only validly created objects can be used at virtual callsites and reducing the
attack surface even compared to a hypothetical defense with a perfect set of allowed
targets.

5.7.2 Source-Based Defenses

VTV [149] is a GCC compiler pass that only allows a statically determined set of vtables
at each vcall, like most binary-only approaches [55, 63, 127] (as well as Marx ’s VTable
Protection presented in Section 4.4.1).

CFIXX [26] is the state-of-the-art source-based C++ defense. Like vps, it stores vtblptrs
in safe memory and fetches them at each callsite. Given the lack of comparison against
the vtblptr as stored in the object, CFIXX prevents but does not detect vtable hijacking.
As an LLVM compiler extension, CFIXX cannot protect applications for which no source
code (and LLVM compilation) is available. Therefore, proprietary legacy applications
cannot be protected afterwards. While CFIXX and vps offer similar security, our binary-
level analysis is completely novel. Unlike source-level analysis, our analysis must consider
both direct and indirect vtable accesses. Moreover, identifying the virtual callsites for
subsequent security instrumentation is challenging given the lack of type information.

VTrust [164] is a source code CFI implementation focusing on C++ applications which
is divided into two components. The first component of this approach creates hashes of
function types during the compilation process and emits them in front of each function
At each virtual callsite, the emitted hash is checked against the type of the vcall. If a
mismatch is found, an attack is identified. The second component replaces the vtblptr of
an object with an index. This index is then used to lookup the corresponding vtable in
a global table. In contrast to vps and CFIXX, this table is only used as a lookup table
for vtable addresses. Hence, it is basically just a way to encode the vtblptr . Therefore, an
attacker is still able to replace the index of an object (which is just an encoded vtblptr)
with another valid index (which is an encoded vtblptr to another vtable). However, the
first component of the approach limits the set of valid vtables.

The approach by Bounov et al. [21] is a compiler pass that reorders the memory layout
of vtable hierarchies and interleaves them. As a result, at each virtual callsite a simple
range and alignment check is sufficient to verify if a vtable from the correct hierarchy is
used. However, in order to work correctly the application has to be linked statically.

5.8 Conclusion and Future Work

In this chapter, we presented vps, a practical binary-level defense mechanism against C++
vtable hijacking attacks. Unlike prior work that restricts the target set of virtual callsites,
our approach protects objects at creation time and restricts their usage to virtual calls that
are reachable by the object. This sidesteps accuracy problems faced by prior work while
simultaneously extending the threat model to include use-after-free attacks. Moreover, vps
provides improved correctness guarantees by handling false positives at vcall verification
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time. Our evaluation shows that vps precisely protects applications from modern C++
code-reuse attacks, including whole-function reuse.

Our analysis for detecting virtual callsites in binaries uncovered inaccuracies in VTV, a
source-based approach that is commonly used as ground truth in this research area and
broadly considered among the state-of-the-art for C++-based defenses. We reported these
issues to the VTV maintainers.

A topic for future work is to improve the binary instrumentation of vps. At the mo-
ment, the safe memory region of our proof of concept implementation is vulnerable to
sophisticated probing attacks. Enhancing it with hardware features such as MPK or other
techniques can significantly improve the security of our vps implementation. Further-
more, the evaluation showed an overestimation of object creation and destruction sites.
Although, as a result of this overestimation, no vtable write was missed, it led to a per-
formance overhead. Improving this analysis could make vps faster.
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Chapter 6
Towards Automated Application-Specific
Software Stacks

Software is getting larger and more complex [11, 30, 95, 97, 107]. One way to handle this
complexity during the development process is the choice of the programming language
(e.g., C++ to use object-oriented programming). Another way to handle complexity
during development is to reuse existing code in the form of shared libraries. This gives
developers the possibility to focus solely on the user-facing application rather than re-
implementing common functionality such as memory management or string processing
functions over and over again. However, since not all code of a given shared library is
used in a given program, the downside of this concept is that unnecessary code is loaded
into memory: a recent study finds that only 5% of the libc, the standard library for the
C programming language, is used on average across 2,016 applications of the Ubuntu
Desktop environment [129].

From an attacker’s perspective, the typical way to exploit an existing vulnerability is
to reuse existing code (e.g., ret2libc [152] or return-oriented programming [136] (ROP))
to execute shellcode and bypass existing mitigation systems such as W ⊕X and address
space layout randomization (ASLR). Since shared libraries offer a plethora of (mostly)
unused code, the attacker has a large variety of existing functions or code parts to choose
from.

The same holds for applications written in interpreted languages, such as PHP, Python,
or Ruby: the interpreter is a complex piece of software and offers more functionality than
the application requires [128]. Hence, an attacker that can inject her own script code into
the application can leverage these provided but unused methods to execute her exploit.

One way to remove the unused code of a shared library is to link it against the target ap-
plication statically using Link Time Optimization (LTO). This allows the linker to remove
the unnecessary code and thus reduce the availability of code snippets an attacker can
choose from for a code-reuse attack. However, this increases the complexity of managing
software updates: Since each application has to be compiled statically linked with all used
shared libraries, each application has to be updated if a vulnerability is found in one of
these libraries. To tackle this problem, Quach et al. [129] presented the concept of piece-
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wise compilation and loading. It allows to compile an application and shared libraries with
additional metadata to have a customized loader only load the needed code into memory.
Unfortunately, the concept of this approach only works with shared libraries and does not
apply to applications written in interpreted languages. As a result, in cases of interpreted
applications, their approach only focuses on a single part of the software stack, the shared
libraries, instead of considering the entire stack encompassing the interpreter and shared
libraries.

6.1 Introduction

In this chapter, we present a first step towards automatic application-specific software
stacks. Our goal is to customize the software stack for a given application (e.g., a web
application or server application) such that only the required library code and underlying
execution environment is contained within the software stack, hence debloating the soft-
ware stack. To achieve this goal, we introduce a compiler extension capable of removing
unused code from shared libraries, written in C. With information about which exported
functions the target application uses, the compiler pass can omit functions at compile
time from the shared library that are not used by the application or library itself. As a
result, a shared library tailored specifically to the target application is created. To en-
hance usability, our approach can create shared libraries that are tailored to more than
one application (e.g., a script interpreter and a web server). In contrast to a statically
linked library, tailoring to a group of applications provides the same flexibility as a dynam-
ically linked shared library given that only the shared library has to be re-compiled if a
vulnerability in its code was discovered. When deployed with other existing defenses, such
as Control-Flow Integrity (CFI) [1], an application-specific software stack further restricts
the wiggle room an attacker can exploit to perform a successful attack.

Moreover, we show that—with the help of domain knowledge—this approach is also
capable of removing unused functionalities in script interpreters when targeting an appli-
cation written in an interpreted language (such as PHP or Ruby). Consider, for example,
a Wordpress installation. With our approach, a PHP interpreter can be tailored to the
concrete Wordpress web application. Since all unused functionalities are removed from
the interpreter, an attacker that is able to inject script code (e.g., by uploading a script
file) is no longer able to leverage them for their attack. Moreover, instead of removing un-
used functionalities in the interpreter, our approach allows us to replace them with booby
traps [43], i.e., dormant code that, when executed, triggers an alarm. This way, an ongoing
attack can be detected when a functionality that was removed is executed. Note that the
shared libraries used by the Wordpress-specific PHP interpreter and the web server can
also be compiled with our debloating approach, leading to an application-specific software
stack. Regarding the recent trend to separate services into container (such as Docker [52])
to provide better security in case of a vulnerability, this makes tailoring shared libraries
to specific server applications real-world deployable.

An application-specific script interpreter also allows reducing the attack surface signifi-
cantly in environments in which untrusted scripts are executed (such as Google App En-
gine [71]). Usually, unwanted functionalities are disabled in configuration files. However,
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since the code that provides these functionalities is still available in the script interpreter,
an attacker might be able to bypass the restrictions and escape the interpreter’s inter-
nal sandbox [109, 118]. When compiling the script interpreter in an application-specific
way, the code for the unneeded functionalities is completely removed, which prevents an
attacker from using them entirely.

We evaluated our prototype compiler pass for LLVM by tailoring two libc implemen-
tations (musl-libc and uClibc) to a diverse set of applications. The results show that,
on average, the code for the musl-libc tailored to an application is reduced by 71.3%. A
previous study on libc utilization [129] concluded that only 5% of code on average is used
in the library. However, their evaluation set consists of mostly small applications, which
explains this notable difference in comparison to our results. Additionally, we show that
by using domain knowledge, our prototype is able to mitigate possible attacks on web
applications: starting from seven security-critical PHP functions that might be used for
remote command execution (according to the RIPS code analyzer [131]) in the interpreter,
a PHP interpreter tailored to OpenConf or FluxBB only contains one sensitive PHP func-
tion. This significantly raises the bar for an attacker able to execute her own PHP code
since using a removed PHP functionality triggers a booby trap and hence raises an alarm.
In fact, in the case of OpenConf, our approach removes the possibility to execute shell
commands from the interpreter in most system configurations due to the nature of the
remaining sensitive PHP function. Additionally, we show the real-world applicability of
our approach by creating a Docker container consisting of an application-specific software
stack for a Wordpress installation. Our evaluation shows that the code of the libc used by
the web server and PHP interpreter in this container is reduced by 65.1% in total, hence
demonstrating that our debloating approach removes a significant fraction of unused code.

Contributions In summary, we provide the following contributions in this chapter:

� We present the design and implementation of an LLVM compiler pass capable of
removing unused code from shared libraries and script interpreters written in C that
effectively reduces the available code snippets for reuse attacks by debloating the
software stack used by a given application.

� Our evaluation shows that, on average, 71.3% of the code in the musl-libc is removed
when tailoring it to a target application. Moreover, when applying our approach to
the PHP interpreter by targeting specific web applications, it is capable of eliminat-
ing entire vulnerability classes, such as command execution.

Outline This chapter is structured in the following way: Section 6.2 gives an overview of
application-specific software stacks. Section 6.3 explains our analysis approach to tailor a
shared library or script interpreter to an application. The implementation of our compiler
extension is explained in Section 6.4, whereas the evaluation is presented in Section 6.5.
We then discuss application-specific software stacks in Section 6.6 and give an overview of
related work in Section 6.7. Section 6.8 ends this chapter with a conclusion and discussion
of possible topics for future advancements.
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The chapter results from a publication at the European Symposium on Research in Com-
puter Security (ESORICS) 2019 [48] and was conducted together with Nicolai Davidsson
and Thorsten Holz. Furthermore, it contains parts of the technical report [49] published
2019.

6.2 Overview

In this section, we give an overview of application-specific software stacks. First, we give
a short description of static and dynamic linking and their differences. Next, we introduce
our idea of application-specific software stacks.

6.2.1 Static and Dynamic Linking

Shared libraries offer developers a way to reuse already implemented functionalities in
their program. These functionalities can either be code in the form of functions or data
(e.g., global variables). For example, libc provides the developer with a variety of low-level
functionalities (e.g., memory allocation and string processing). During compilation, there
are two ways to couple the external functionalities with the own application: static linking
and dynamic linking. In case of static linking, the external functionalities are resolved and
plainly copied into the application during compilation. This means that no shared library
is needed to execute the application since all library-provided functionalities are part of
the program itself and hence available in memory. In case of dynamic linking, the external
functionalities are replaced with a symbol which is resolved during the execution of the
program. Hence, the shared libraries that provide the functionalities have to be present
in memory to execute the application.

In practice, dynamic linking is used in most deployment scenarios. This allows the
system to use the same shared library for multiple applications. Furthermore, having
only one copy of the shared library improves usability during software patching: if a
vulnerability is found in a function offered by a shared library, the user only needs to
update the corresponding shared library. Since all dependent applications use this shared
library, the vulnerability is fixed for all of them. In case of static linking, all applications
using this functionality have to be updated to fix the vulnerability. As explained earlier,
the main downside of using dynamic linking is the fact that this approach increases the
amount of unused code that is mapped into the memory of the application. Therefore,
sensible operations in functionalities not used by the application itself are also present in
memory.

6.2.2 Application-Specific Software Stacks

The idea behind application-specific software stacks is based on the observation that ap-
plications do not use every functionality provided by their underlying software stack (e.g.,
interpreters or libraries). Therefore, it is safe to remove code of these unused function-
alities to debloat the application without affecting it. Furthermore, by removing code
snippets or whole functions that can potentially be used by an attacker in code-reuse at-
tacks narrows down the options an attacker has. This also holds for scripting languages,
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Figure 6.1: Schematic overview of the difference of the code footprint between a tradi-
tional software stack and an application-specific one showing the average code
reduction of around 70%. On the top it is shown for a native code application,
on the bottom for an interpreted application such as a web application. Even
though the interpreter is part of the support layer, it also does not use the
complete code provided by the shared libraries.
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for example, in a web application context: the script interpreter offers more functionality
than the web application uses. Stripping the interpreter from these functionalities debloats
the interpreter, but does not interfere with the given web application. Moreover, in cases
an attacker is able to insert her own script code (e.g., by uploading a script file to a web
server), she is limited in the interpreter functionalities she can use. Figure 6.1 shows the
difference between a normal software stack and an application-specific one graphically.

We define two layers for a software stack: the application layer and the support layer.
The application itself resides on the application layer. This can either be a native code
application or an application written in an interpreted language (e.g., web application).
In a web application context, the application layer also includes the web framework the
application uses. The libraries and script interpreter are located on the support layer. This
layer provides functionalities that are used by the application. However, it also contains
additional code and functionalities that are not used by the application. Underneath the
support layer resides the operating system (OS). Functionalities provided by the OS are
usually accessed via the support layer through low-level libraries such as the libc.

Our goal is to debloat the software stack by removing unneeded code from the support
layer. This is done by analyzing the application and retrieving control transfers from
the application layer into the support layer. This information is then used to recompile
the support layer without the unused code. The result is a software stack tailored to
the application. However, this approach is not limited to tailoring the support layer to
only one application, thus increasing its usability. Consider for example a Wordpress
installation. The libraries used by the web server and PHP interpreter can be specifically
tailored to support both. Moreover, the PHP interpreter can be customized to only contain
functionalities used by Wordpress. Hence, the debloating is achieved throughout the whole
software stack by preserving the usability of shared libraries.

In the case of native code applications, the same code reduction can be achieved by
using static linking with LTO during the compilation and linking process. As a result, the
functionalities provided by the libraries and used by the application are directly inserted
into the code of the program. This moves parts of the support layer directly into the ap-
plication layer. However, this also means that the advantages of sharing libraries between
multiple applications are also lost. As a result, as soon as a vulnerability is discovered in
a library functionality, all applications using this library have to be updated. Application-
specific software stacks, on the other hand, still provide the advantages of shared libraries.
It is possible to group different applications to use one shared library tailored to them (as
in our example a web server and script interpreter). Hence, our approach offers a middle
ground between code reduction and usability.

6.3 Approach

In this section, we describe our approach for application-specific software stacks. We start
by describing the basic method of our LLVM pass and refining it step-by-step throughout
this section until each challenge encountered is tackled. The final goal in this chapter is to
create a Wordpress installation with a tailored PHP interpreter and a libc implementation
application-specific to the interpreter and web server. Hence, the described method focuses
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Figure 6.2: Example of the basic idea of the analysis. A target application uses the func-
tion area square. Hence, the function area rectangle is also added to the
whitelist.

only on tailoring the libraries to a target application first. Afterwards, domain knowledge is
used to enhance our approach to also support specific script interpreters, more specifically,
the PHP and Ruby interpreter. Finally, we show the complete algorithm capable of
handling shared libraries, PHP and Ruby interpreter.

6.3.1 Libraries

The control-flow transfer from the application layer into the support layer can be performed
in multiple ways. In the easiest form, it is a direct call of a function. However, more
complicated constructs such as indirect calls via function pointers are also possible. An
analysis tailoring libraries to a specific application at compile time must not miss any of
these, since one missing functionality leads to an uncompilable library in the best case,
and a broken application in the worst. Next, we describe a method for LLVM capable of
handling all these cases.

Base Method We start with a whitelist of functions, which initially contains all exported
functions of the library used by the target application. The exported functions can be
obtained by reading the metadata of the target application (e.g., with the help of the
binutils tool readelf). Consider the example shown in Figure 6.2. The target application
uses the function area square of the library. During compilation, each currently processed
function is checked if it resides in the whitelist. If the function area square is processed,
all direct control-flow transfers are also explored. Each new function that is reachable
by the direct control-flow transfer is added to the whitelist and further explored. In this
example, the function area rectangle is added to the whitelist. This phase of searching
for new reachable functions is called function exploration. Since this phase uses a depth-
first search (DFS) approach, it is guaranteed to visit all functions that are reachable by
an initial given function. Hence, all functions in the whitelist after the analysis is finished
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are necessary for the application to work. All other functions can be safely removed. In
the given example, area circle and area ellipse are dismissed.

Indirect Control-Flow Transfers Unfortunately, the compiler cannot always determine
the target of a control-flow transfer. Often control-flow transfers are handled with the
help of function pointers, i.e., through indirect call instructions. Therefore, we have to
consider them during our analysis. Hence, we have to extend our approach to work with
instructions handling function pointers. We found that the following LLVM intermediate
representation (IR) instructions are capable of handling function pointers:

� store: storing data in a variable.

� return: returning data at the end of a function.

� select: chooses between two distinct values depending on a boolean condition.

� phi: merging multiple variables into a single variable for Single Static Assignment
(SSA) form [45].

Since all these instructions can work with a function pointer, our analysis has to be able
to process them. Therefore, we extend the function exploration phase to extract the data
handled by these instructions to find all indirect control-flow transfers. If the extracted
data is a function pointer, we continue the exploration at the pointer target.

This refined method handles all possible function pointers that are set inside the used
code. However, since the semantics of the code are not considered, this analysis can
overestimate the actually used functions. Consider for example a select instruction that
chooses between two function pointers. When the boolean condition evaluates always to
true, then only one function is ever reached by this code construct. Yet, our analysis
considers both functions as reachable and thus overestimates the actually used functions.
Note that this conservative overestimation guarantees us to not break the application.

Global Variables Although function pointers set directly in the code are already handled
by our analysis, function pointers can also reside in global variables. Consider the code
snippet from musl-libc shown in Figure 6.3a. The function stdout write is stored as
function pointer in the global variable stdout. This variable is a FILE struct used for I/O
operations. Figure 6.3b shows the function fwrite that uses a pointer to a FILE struct to
invoke the write function stored there. Since the current form of our algorithm is not able
to find the stdout write function pointer in the global variable, a valid call to fwrite

with the global variable stdout as argument would break the application.

To handle global variables, we add a global exploration phase to our analysis. In this
phase, all global variables are processed and checked for function pointers. If they contain
a function pointer, the target is added to the whitelist as well. The global exploration phase
is executed before the function exploration phase to guarantee that the newly whitelisted
functions are also explored. A discussion about limitations of our function pointer analysis
is given in Section 6.6.
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static FILE f = {

.write = __stdout_write,

//...

};

FILE *const stdout = &f;

(a) Definition of a function pointer in a global variable from src/stdio/stdout.c.

size_t __fwritex(const unsigned char *restrict s, size_t l, FILE *restrict f)

{

//...

size_t n = f->write(f, s, i);

//...

}

size_t fwrite(const void *restrict src, size_t size, size_t nmemb, FILE

*restrict f)

{

//...

k = __fwritex(src, l, f);

//...

}

(b) Possible usage of a function pointer from src/stdio/fwrite.c.

Figure 6.3: Code snippets from musl-libc that show the usage of function pointers in global
variables.
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6.3.2 Script Interpreters

Often applications written in scripting languages like PHP, Ruby, or Python are not
translated into native code, but interpreted by the corresponding script interpreter. As a
result, the interpreter itself is a part of the support layer for these applications. However,
in contrast to the method described in Section 6.3.1 for native code libraries, the analysis
cannot just remove code from the interpreter since it cannot distinguish which code belongs
to a certain interpreter functionality. Hence, to build an application-specific interpreter,
our analysis has to leverage domain knowledge about the internals of the target interpreter.
More specifically, the analysis has to know the mapping of script functions to native code
functions. To achieve our goal of running a Wordpress installation with an application-
specific interpreter, we modify our analysis to work with the PHP interpreter in the
following. To show that our approach is not limited to PHP, we further extend our
algorithm to work with the Ruby interpreter.

PHP PHP stores information for each registered PHP function in global function entries,
which are basically a map of structs [126]. The structs contain, among others, the pointer
to the native code function and the name of the PHP function. During execution, they
are used to handle the transition from PHP to native code. The interpreter uses these
function entries to look up the native code function that is eventually executed to perform
the application’s desired functionality. Hence, modifying these function entries during the
compilation of the PHP interpreter to remove the code from it is the best way to keep our
approach as generic as possible. Since the function entries are part of the architecture of
PHP, they are less likely to change between different PHP versions and hence our approach
should be compatible with upcoming PHP releases.

To enable our analysis to remove PHP functionalities from the interpreter at compile
time, we introduce a whitelist of PHP functions and modify the global exploration phase.
The modification extracts the PHP function names from the PHP global function entries
and checks if they are on the PHP whitelist. If they are, the corresponding native function
is stored for processing during the function exploration phase. As a result, the native code
corresponding to the functionality only remains in the interpreter when it is on the PHP
whitelist.

PHP supports the paradigm of object-oriented programming, i.e., functions can be
associated to classes. An example of a class and its member function directly provided
by the PHP interpreter is the Directory class and its function read [147]. However, the
PHP function name does not contain any information about the associated class. Hence,
if multiple classes register a PHP function with the same name, our analysis is not able
to distinguish between them. Consider an example where classes A and B both register
a function with the name read. If the application only uses A::read, our analysis will
still whitelist the read function of both classes. This loss in precision results in the PHP
interpreter still containing functionality that is not needed, however, it guarantees to not
break the application.

Ruby In contrast to PHP, Ruby does not register its functions through global function
tables. Instead, Ruby functions are added by calling internal register functions at runtime.
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void Init_IO(void)

{

//...

rb_define_global_function("syscall",

rb_f_syscall,

-1);

rb_define_global_function("open",

rb_f_open,

-1);

rb_define_global_function("printf",

rb_f_printf,

-1);

//...

}

Figure 6.4: Ruby function registration example from io.c.

Listing 6.1: A list of Ruby’s internal registration functions.

1 rb_define_protected_method

2 rb_define_private_method

3 rb_define_singleton_method

4 rb_define_method

5 rb_define_method_id

6 rb_define_module_function

7 rb_define_global_function

8 rb_define_alloc_func

9 rb_define_virtual_variable

10 rb_define_hooked_variable

Figure 6.4 shows how various I/O functions are registered in the Ruby source code. The
arguments to the internal register function contain the name of the Ruby function and a
pointer to its native code pendant. A list of all internal register functions can be found in
Listing 6.1. To remove the functionality provided by Ruby functions, we aim to remove
these registering function calls from the code. Again, our approach tries to focus on the
architecture of the interpreter since this is less likely to change between versions and hence
our approach should be compatible with upcoming Ruby releases.

To enable our analysis to remove Ruby functionalities from the interpreter at compile
time, we added a whitelist for Ruby functions and modified the function exploration phase.
Basically, the function exploration phase now checks if a call instruction calls an inter-
nal register function to register a Ruby functionality. If it does and the Ruby function
name of the registration is whitelisted, the corresponding native code function is further
explored. Otherwise, the corresponding call instruction is deleted from the code. As a
result, only the code corresponding to whitelisted Ruby functions is part of the compiled
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Ruby interpreter and since the call instruction is removed, the Ruby interpreter does not
register the functionality at runtime and preserves its integrity.

This method works with Ruby functions registered directly in the code. However, dy-
namically registered Ruby functions are not detected. But since we did not encounter
any dynamically registered Ruby functions in the core functionalities, we did not pursue
it further.

6.3.3 Algorithm

The complete algorithm of our automated application-specific software stack approach
as described in this section is given in Algorithms 1, 2, and 3. The LLVM compiler
pass executes Algorithm 1 for each module that is compiled. This algorithm then uses
Algorithm 2 for the global exploration to handle global variables and Algorithm 3 for the
function exploration phase to process functions.
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Algorithm 1 Starting part of our algorithm that is executed for each module that is
compiled. The algorithm whitelists all needed functions during compilation. It is capable
of handling shared libraries, the PHP interpreter and the Ruby interpreter.

global set whitelist
global set php whitelist
global set ruby whitelist

function visit module(module)
// Start Global Exploration
for all global in module.globals do

explore global(global) // See Algorithm 2
end for

// Start Function Exploration
for all func in module.funcs do

if func in whitelist then
explore function(func) // See Algorithm 3

end if
end for

end function

Algorithm 2 Global exploration phase of our algorithm that is executed to process global
variables. The algorithm whitelists all needed functions during compilation. It is capable
of handling shared libraries, the PHP interpreter and the Ruby interpreter.

function explore global(global)
if is php and global is php function table then

for all (func name, func ptr) in global do
if func name not in php whitelist then

global.delete(func name, func ptr)
else

whitelist.insert(func ptr)
end if

end for
else if global is struct then

for all member in global do
explore global(member)

end for
else if global is function pointer then

whitelist.insert(global)
end if

end function
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Algorithm 3 Function exploration phase of our algorithm that is executed to process
functions. The algorithm whitelists all needed functions during compilation. It is capable
of handling shared libraries, the PHP interpreter and the Ruby interpreter.

function explore function(func)
whitelist.insert(func)
set targets

for all instr in func do
if instr.type == call then

targets.insert(instr.target)
if is ruby then

if instr.target is ruby register function then
(func name, func ptr) = instr.args
if func name in ruby whitelist then

targets.insert(func ptr)
else

delete instruction instr
end if

end if
end if

else if instr.type == store then
targets.insert(instr.store value)

else if instr.type == return then
targets.insert(instr.return value)

else if instr.type == select then
targets.insert(instr.true value)
targets.insert(instr.false value)

else if instr.type == phi then
for all value in instr.incoming values do

targets.insert(value)
end for

end if
end for

for all target in targets do
if target is function then

if target not in whitelist then
explore function(target)

end if
end if

end for
end function
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6.4 Implementation

Our prototype implementation resides in the compiler itself since it has to be able to
modify the code and data structures directly (e.g., for the PHP interpreter). Hence, to
build a tailored software stack for a given software, the whole support layer has to be re-
compiled using our compiler pass. The support layer consists of the libraries (and script
interpreter) of the target application, and all libraries used by the libraries. Eventually,
an application-specific software stack is created for the given software. For native code
applications, the used exported functions have to be extracted as initial information for
the compiler pass (e.g., with the help of the binutils tool readelf). For applications using
script languages, the analysis to get all used interpreter functionalities has to be done by
external tools like Parse [41] for PHP.

We built the prototype of our approach as compiler pass for LLVM 5.0.1. In total, our
implementation consists of around 1,000 lines of C++ and 100 lines of Python code. To
prevent possible dependency issues, each created module by LLVM is merged into one.
This gives our compiler pass a global view of all existing code and data. Since our pass
works on the LLVM IR, it is completely architecture and platform independent. Hence,
each architecture that is supported by LLVM is also supported by our approach (e.g.,
ARM or MIPS).

In order to integrate it into the build process of an application as seamlessly as possible,
we created a compiler wrapper script. This script is used as compiler for the application
and handles all steps needed to perform our analysis.

6.4.1 Manual Configuration

Although our approach aims to automate the process in creating an application-specific
software stack, a user might want to preserve certain functionalities in the libraries. This
can have various reasons, e.g., using the same library by multiple applications. Hence, the
user is able to modify the configuration file for the library and add additional function
names to the whitelist. Furthermore, a library could need an additional whitelisted func-
tion which is not referenced directly from the application. This is the case for C entry
functions (e.g., start) which are directly called by the loader during load time.

Since LLVM does not lift assembly instructions into its IR, control-flow transfers to
functions done in assembly are not detected by our analysis. Figure 6.5 shows an example
encountered while compiling musl-libc for the target application. The control-flow transfer
to function sigsetjmp tail is not detected by our analysis. We encountered five such
cases in which assembly instructions in the code call a function not referenced in the rest
of the code base (three in musl-libc and two in uClibc). Since we did not encounter any
cases outside of the libc, we believe such cases more common in libraries providing low-level
functionalities such as memory management and hence an exception.

Another case for manual configuration are functions that are resolved dynamically via
loader functionalities such as dlsym. Since these functions do not have a reference in
the code (either a direct reference or an indirect via a function pointer), our current
prototype is not able to detect them. However, since we only encountered one case of
dynamically resolved functions during our evaluation ( dls3 in musl-libc), we believe this
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sigsetjmp:

__sigsetjmp:

;...

.hidden __sigsetjmp_tail

jmp __sigsetjmp_tail

;...

Figure 6.5: Assembler instructions initiating a control-flow transfer found in
src/signal/x86 64/sigsetjmp.s

feature to be rarely used in practice. Furthermore, this function was not resolved by loader
functionalities, but by a self-implemented version of dlsym inside the musl-libc. This shows
further how difficult it is to fully automate the process of creating an application-specific
software stack and the reason for allowing manual configuration. A detailed discussion on
how to address these cases in an automated way is given in Section 6.6.

6.4.2 Booby Trapping Script Interpreters

Most scripting languages offer ways to list all registered functions. An attacker able to ex-
ecute script commands is therefore able to use this functionality as information leak to cir-
cumvent a removed functionality. For example, the PHP function get defined functions

returns all functions registered to the interpreter. To thwart these attempts, our approach
is not only able to remove functionality from the script interpreter, but to replace its na-
tive code implementation with a booby trap [43]. A booby trap contains code that when
executed warns from an attack. Since this code lies dormant in memory and is never exe-
cuted by the benign application, an execution of this code detects an altered control flow
and hence an ongoing attack. When the native code implementation of a script function is
replaced by this code, an attacker executing interpreter functionality that is not used by
the application otherwise is detected. Furthermore, this removes any leak regarding the
information about functions registered to the interpreter. If the attacker does not have
access to the source code of the application (e.g., a proprietary application), this removes
the possibility to circumvent booby traps.

6.5 Evaluation

As a target for our applications, we use Linux on the Intel x86-64 architecture because of its
popularity as a server system. In this section, we first evaluate the effect of an application-
specific software stack on the used shared libraries, afterwards a PHP interpreter tailored
to specific web applications is measured. Subsequently, we study the code reduction of our
approach on our running example: an application-specific software stack for a Wordpress
installation. Finally, we perform a security evaluation of our approach on the basis of
several CVEs and discuss the performance overhead.
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6.5.1 Libraries

To evaluate the effect of our approach on native code applications, we compile different
libc versions as an application-specific software stack. Unfortunately, the most common
implementation glibc is written in GNU C, an extension of the C programming language
which is not supported by LLVM [110]. Therefore, we resort to two other popular libc
implementations: musl-libc (1.1.18) and uClibc (0.9.34). The musl-libc focuses on speed,
feature-completeness, and simplicity [111]. It is used, for instance, by the Alpine Linux
distribution, which is the distribution used for official Docker containers [34]. The uClibc
implementation targets microcontrollers and therefore focuses mainly on size [8] (e.g., it
is used by the buildroot project [25]). We compile both libc implementations without
any changes by our transformation to have a complete shared library to compare against
as an upper boundary. As a lower boundary, we compile both implementations using
our approach with a minimal configuration which contains the least amount of functions
necessary in the initial whitelist to compile the library (5 functions for musl-libc and 12
functions for uClibc).

To show the effect of an application-specific shared library, we compile the libc implemen-
tation for different applications: Micro-Lisp, Nginx (1.13.8), Lighttpd (1.4.48), Busybox
(1.28), PHP (7.3.0-dev) for different web applications, and Miniruby (2.6.0-dev). To have
a small basic PHP interpreter that supports all base features of our used web applications,
we enabled support for Mysqli and zlib and disabled support for XML, iconv, PEAR, and
DOM. Additionally, the PHP interpreter is also compiled in a minimal configuration (the
least amount of functions necessary to run it) and in a complete configuration to better
show the impact of an application-specific library. The Ruby interpreter has the option to
build a smaller version of itself called Miniruby. This interpreter only contains the core
functionalities (YARV instruction set [134]) of the Ruby interpreter. Since the difference
between a complete Miniruby interpreter and a minimal Miniruby are smaller, it is more
suited to show the impact of our approach than the full-fledged Ruby interpreter. For
Busybox, we had to disable the coreutil functionalities: date, echo, ls, mknod, mktemp,
nl, stat, sync, test and usleep. We were not able to compile uClibc with LLVM when
these features were activated because of the dependency on buildroot. Hence, we had to
modify the toolchain for uClibc to work without buildroot.

Code Reduction Table 6.1 depicts the results of our measurements. As evident from
the table, the complete musl-libc has 2,603 functions, whereas a minimal configuration
only needs 358 functions (13.8%) to be compilable. These configurations provide an upper
and lower boundary of the code reduction that is possible for a target application. When
tailoring the musl-libc to a specific application, Micro-lisp needs the fewest functions from
the library with 14.1% remaining. In fact, this configuration needs only eight functions
more than the minimal configuration which is necessary to compile the library. A complete
PHP interpreter needs the most with 39.0%. On average, 30.3% of the functions remain
in the musl-libc when tailored to an application. Since uClibc focuses on being as small as
possible to work on microcontrollers, it does not have all features that the libc provides.
Therefore, only Busybox and Micro-Lisp of our evaluation set work with this library.
The complete library has 891 functions, whereas the minimal configuration only has 164
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Table 6.1: Results of the remaining code for musl-libc and uClibc. On top for each library,
the table shows the number of functions and code size for the complete and
minimal library. The minimal library shows the remaining code for a configu-
ration which contains the minimal number of functions to compile the library.
Following the same metrics for the library tailored to a specific application.

Program #Funcs % Code Size % Program #Funcs % Code Size %

musl-libc (complete) 2,603 1,007 kB uClibc (complete) 891 450 kB
musl-libc (minimal) 358 13.8 116 kB 11.5 uClibc (minimal) 164 18.4 108 kB 23.9

Micro-lisp 366 14.1 118 kB 11.7 Micro-lisp 168 18.9 115 kB 25.5
Busybox 893 34.3 345 kB 34.2 Busybox 388 43.6 329 kB 73.2
Nginx 762 29.3 276 kB 27.4
Lighttpd 745 28.6 260 kB 25.9
PHP (Complete) 1,014 39.0 390 kB 38.8
PHP (FluxBB) 817 31.4 296 kB 29.4
PHP (OpenConf) 839 32.2 326 kB 32.3
PHP (Wordpress) 874 33.6 336 kB 33.4
PHP (Minimal) 768 29.5 280 kB 27.8
Miniruby (Complete) 907 34.8 325 kB 32.3
Miniruby (Minimal) 684 26.3 221 kB 21.9

(18.4%). A uClibc tailored to Micro-lisp has 168, which are 18.9% of all functions and only
four functions more than the minimal configuration possible. The Busybox configuration
has 43.6% functions remaining after its compilation. This shows that even a library
focusing on being as small as possible can be further reduced by our approach. The code
size confirms that the libraries did not only lose small wrapper-like functions, but that the
code is reduced in a proportional way to the number of functions present.

Removing PHP functionalities from the interpreter also influences the code required
in the underlying libc. A complete PHP interpreter has 39.0% of the functions available
in the musl-libc remaining, whereas a minimal PHP interpreter only needs 29.5% of the
functions in the library. A PHP interpreter tailored to the Wordpress web application,
the largest web application of our evaluation set, needs only 33.6% of the functions of the
musl-libc. On average, a PHP interpreter tailored to a web application needs only 32.4%
of the functions. This shows that for software debloating it is imperative to not only focus
on the shared libraries itself, but to take into account the actual application running when
an interpreted language is used.

Code-Reuse Attacks A modern way for an attacker to exploit a vulnerability in an
application is to reuse existing code. One way for an attacker is to transfer the control
flow to an existing function in a library with crafted arguments and therefore execute the
behavior the attacker desires (e.g., ret2libc attack [152]). However, since the number of
existing functions in the library is significantly reduced, an attacker may not be able to
find a function that executes the behavior she needs. For example, in all configurations
listed in Table 6.1, except for Busybox for uClibc, the function system which is usually
used to execute shell commands in an exploit is removed from the code.

Another way to reuse existing code for an attack is called return-oriented programming
(ROP) [136]. For this exploiting technique, small code snippets called gadgets are com-
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Table 6.2: Results of our gadget evaluation for musl-libc and uClibc. On top for each
library, the table shows the number of unique ROP gadgets for the complete
and minimal library. The minimal library shows the remaining gadgets for
a configuration which contains the minimal number of functions to compile
the library. Following the same metrics for the library tailored to a specific
application.

Application #unique % #JOP % #COP % #CP % syscall %

musl-libc (complete) 9,692 332 324 581 157
musl-libc (minimal) 1,578 16.3 40 12.1 106 32.7 108 18.6 81 51.6

Micro-lisp 1,581 16.3 36 10.8 113 34.9 110 18.9 81 51.6
Busybox 3,203 33.1 152 45.8 204 62.7 252 43.4 103 65.6
Nginx 3,196 33.0 105 31.6 166 51.2 209 36.0 106 67.5
Lighttpd 2,694 27.8 97 29.2 163 50.3 224 38.6 101 64.3
PHP (Complete) 4,012 41.4 130 39.2 235 72.5 281 48.4 106 67.5
PHP (FluxBB) 2,950 30.4 99 29.8 210 64.8 222 38.2 100 63.7
PHP (OpenConf) 3,387 35.0 101 30.4 201 62.0 226 38.9 97 61.8
PHP (Wordpress) 3,518 36.3 133 40.1 184 56.8 223 38.4 97 61.8
PHP (Minimal) 2,794 28.8 85 25.6 187 57.7 195 33.6 96 61.2
Miniruby (Complete) 3,533 36.5 97 29.2 181 55.9 237 40.8 112 71.3
Miniruby (Minimal) 2,578 26.6 59 17.8 176 54.3 181 31.2 104 66.2

uClibc (complete) 6,101 663 285 546 733
uClibc (minimal) 1,736 28.5 87 13.1 75 26.3 142 26.0 150 20.5

Micro-lisp 1,724 28.3 82 12.4 77 27.0 146 26.7 150 20.5
Busybox 3,896 63.9 315 47.5 129 45.3 312 57.1 325 44.3

bined by the attacker to build the shellcode. Since an attacker needs a variety of different
ROP gadgets to obtain the shellcode she needs, we measured the reduction of gadgets in
the library with the tool ROPgadget [132] in version 5.6. While a tailored software stack
alone does not prevent code-reuse attacks, this metric gives an estimate on the limitation
an application-specific software stack imposes on ROP attacks. Besides measuring the
number of unique ROP gadgets remaining, we also measured security-sensitive gadgets
such as jump-oriented programming (JOP) [20], call-oriented programming (COP) [29],
call-preceding gadgets (CP) [29], and syscall gadgets [136].

A minimal configuration of musl-libc and uClibc has only 16.3% and 28.5% of the unique
ROP gadgets the complete library has. A tailored musl-libc has in the worst case 41.4%
of unique ROP gadgets remaining for the complete PHP interpreter and in the best case
16.3% for Micro-lisp. For a tailored uClibc, 28.3% of the unique ROP gadgets remain for
Micro-lisp and 63.9% for Busybox. Since uClibc is already optimized in regard to code size,
the gadget reduction was to be expected less than the one for musl-libc. A full overview
of all remaining gadgets is given in Table 6.2.

Overall, our evaluation shows that an application-specific library loses most of its code.
The code size reduces proportionally to the number of functions removed. Furthermore,
the number of unique ROP gadgets is reduced significantly, which narrows down the
choices an attacker has when exploiting a vulnerability. While an application-specific
software stack alone does not prevent code-reuse attacks, the combination of a tailored
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Table 6.3: Results for PHP. The categories show the number of sensitive functions remain-
ing in the PHP interpreter for each configuration. The special configurations
complete and minimal give the numbers of sensitive functions for an unmod-
ified PHP interpreter and a PHP interpreter containing the least number of
functions to be executable.

Base Interpreter Application-Specific Interpreter

Complete Minimal FluxBB OpenConf Wordpress

Code Execution 5 0 3 2 3
Command Execution 7 0 1 1 4

software stack with other defenses (e.g., CFI) might restrict an attacker sufficiently to
prevent exploitation.

6.5.2 Web Applications

To show the applicability of an application-specific software stack for applications using
a script interpreter, we measure the impact of our approach on web applications, namely
FluxBB (version 1.5.10, 21,295 LOC), OpenConf (version 6.80, 21,232 LOC), and Word-
press (version 4.9.1, 183,820 LOC). We focus on web applications for PHP and use the same
interpreter as compiled for the evaluation in Section 6.5.1. To give a realistic overview,
we have chosen web applications of different categories and sizes. To generate the ini-
tial whitelist of PHP functions as described in Section 6.3.2, we use the static analysis
tool Parse [41]. Unfortunately, Parse does not support the paradigm of object-oriented
programming, which leads to the necessity to add two additional functions to the initial
whitelist for FluxBB (dir and read) and one for Wordpress (mysqli connect).

Although modern web applications often provide a way to install additional plugins, we
only evaluate our approach on the basic web applications to give a base line of removable
functionalities. If someone wants to use specific plugins, these plugins only have to be
included into the extraction of PHP functions for the initial whitelist to work with the
resulting customized interpreter.

To evaluate the quality of the removed code, we measure the number of remaining
sensitive functions in the script interpreter. We use the categories provided by the open-
source version of RIPS, a static PHP security scanner [47]. Since the goal of an application-
specific script interpreter is to reduce the impact of an attacker executing arbitrary PHP
code (e.g., by uploading an attacker controlled script file), we focus on the categories Code
Execution and Command Execution. Code Execution contains all functions that allow
an attacker to execute arbitrary PHP functionality and Command Execution contains all
functions that allow an attacker to execute shell commands on the host. Table 6.3 shows
the full results, in the following we provide a high-level overview.

The base interpreter without any functions removed has five PHP functions in the
Code Execution category (assert, create function, preg filter, preg replace, and
preg replace callback). In contrast, a minimal configuration of the interpreter (least
amount of PHP functions necessary to run the interpreter itself) does not have any such
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function. This shows that it is possible to remove this functionality completely from the
interpreter as long as the target web application does not use one of the sensitive functions.
Unfortunately, all projects use some Code Execution functionality and hence our approach
is not able to remove it completely from the script interpreter with FluxBB using three
different PHP functions, OpenConf two, and Wordpress three.

PHP functions that provide the ability to execute arbitrary shell commands on the
host system are in the category Command Execution. A complete PHP interpreter pro-
vides seven such functions (exec, passthru, popen, proc open, shell exec, system, and
mail) and a minimal configuration none. Unfortunately, each of the web applications
of our evaluation set again uses at least one sensitive function from the category. For a
FluxBB installation, the only PHP function allowing arbitrary shell command execution
remaining is exec. However, since exec is only used to display the system’s uptime in the
administration control panel, removing it from the code would allow to remove the ability
to execute shell commands completely from the script interpreter. Hence, an attacker
that is able to upload her own script file to a web server is no longer able to execute shell
commands. An OpenConf configuration has also only one PHP function remaining in the
Command Execution category, the function mail. However, there are multiple limiting
factors to consider before an attacker is able to execute shell commands with the help of
mail which we discuss in Section 6.5.4 in detail. Hence, a tailored script interpreter for
OpenConf removes the attack vector of Command Execution in most cases completely. A
configuration for Wordpress has still four PHP functions that allow shell command execu-
tion. Here, the functionality still remains in the script interpreter and a malicious usage
is only mitigated by the insertion of booby traps as explained in Section 6.4.2. An at-
tacker not knowing about the tailored PHP interpreter that gains arbitrary PHP function
execution could trigger a booby trap by executing a removed functionality.

In summary, an application-specific script interpreter reduces the available options for
executing code or shell commands. Furthermore, it is also able to remove certain func-
tionalities altogether and leave the attacker with no possibility to perform such an attack.
In cases where the functionality still remains in the interpreter, it mitigates its malicious
effects by inserting booby traps (which are especially effective in case of proprietary web
applications) that can be triggered by an attacker using a removed functionality.

6.5.3 Use Case: Wordpress Container

To evaluate the debloating effect for a real-world scenario, we created a Docker container
for our running example, an application-specific Wordpress installation. This container
comprises of a PHP interpreter tailored to Wordpress, as well as a musl-libc tailored to
the Nginx web server and PHP interpreter. Since the web server has to interact with
the interpreter directly, PHP is additionally compiled with the FastCGI Process Manager
(FPM). This scenario comprises a setting for which our approach was designed. One
shared library tailored to multiple applications to keep the usability benefits of dynamic
linking and a script interpreter customized for a web application.

The code reduction for the script interpreter is as discussed in Section 6.5.2. However,
the reduction in the library is different since it is now tailored to two applications. The
code of the musl-libc is reduced to 351 kB (34.9% of its original size). To put things in
perspective, the musl-libc tailored solely to a Wordpress customized PHP interpreter has
only 33.4% of its code remaining and a Nginx -specific library 27.4%. This suggests that
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most of the library functions are shared by PHP and Nginx. Only 2.958 unique ROP
gadgets were found (41.2% of the original amount). Even when comparing to a library
specific to a complete PHP interpreter, this shared musl-libc setup results in a smaller
library with less code.

In summary, this real-world setting shows a significant code reduction even with a library
tailored to multiple applications. Since this code reduction restricts the options for an
attacker performing an attack (e.g., whole function reuse, ROP, or PHP code execution),
it is an important additional piece for a security-in-depth environment already providing
other forms of defenses (e.g., CFI).

6.5.4 Security Evaluation

OpenConf 5.30 had multiple vulnerabilities that could be chained together to gain remote
code execution [46]. This was achieved by injecting PHP code into an uploaded file and
executing it. In an application-specific script interpreter for OpenConf, the attacker’s pos-
sibilities are limited after gaining PHP code execution. The only remaining way to execute
shell commands is by using the mail function which allows control over the arguments
passed to the underlying sendmail command. However, before the arguments are passed
to sendmail by the PHP interpreter, they are escaped internally. As a result, it is exploited
by creating a file that can be abused as PHP shell and thus gain PHP code execution [69].
However, again the only remaining way for the attacker to execute shell commands with
her created PHP shell is with the mail function. Hence, it is not possible for the attacker
to execute any shell commands with the tailored PHP interpreter. The only exception is
a system that uses the Exim mail server which allows a direct shell command execution
with the mail function. Therefore, depending on the system configuration, an application-
specific script interpreter would mitigate such an attack.

CVE-2016-5771 and CVE-2016-5773 in the PHP interpreter were found for Pornhub’s
bug bounty program in 2016 [74]. The penetration testers used it to exploit the
unserialize function and gain remote code execution on the server. In their ROP
shellcode, they used the function zend eval string to interpret a given string as PHP
code. Although an application-specific PHP interpreter would not have eliminated this
vulnerability (since the code was used by the web application), the exploiting could be
made more difficult with it. For example, the native code function zend eval string

is not present in any of our tailored interpreter instances (except the complete PHP
interpreter). Additionally, when interpreting a string as PHP code, it might use a
removed functionality and thus trigger a booby trap. Hence, depending on the used web
application, the range of suitable candidates to use for an exploit can be limited.

6.5.5 Performance

Since our approach only removes unnecessary code from the support layer of the target
application, it does not induce a performance penalty. However, it does not have a perfor-
mance gain either, because only code is removed that is not executed by the application
anyways. The memory consumption of an application-specific library is smaller than the
consumption of the complete library, since code is removed from the binary and therefore
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not loaded into memory. Nonetheless, since each group of applications need their own tai-
lored library, the overall memory consumption of the system is increased. However, since
using containers for each service (which also increase the memory consumption for each
used library) gains more popularity, we deem it acceptable for practical deployments.

6.6 Discussion

Scripting languages often offer the possibility to dynamically evaluate code (such as eval
in PHP). When used by the application, it makes the initial analysis to gather all necessary
interpreter functionalities much harder. Our approach relies on the accuracy of special-
ized analysis tools for this. However, if the analysis tool is not able to provide accurate
data, the tailored interpreter could break the application. Furthermore, if a user-provided
input is directly passed to an evaluation function, stripping down the interpreter becomes
impossible since the user can provide any programming construct she likes. However, such
flawed code constructs allow direct access to the system anyway and trying to prevent it
can be regarded as a losing battle.

As evident from our evaluation, an application-specific interpreter reduces the options an
attacker has if she is able to execute own code in a targeted web application. Furthermore,
it is able to remove certain vulnerability classes completely. However, if a web application
uses a certain interpreter functionality that can also be used for an attack, our approach
is not able to thwart this. To be more precise, if a web application relies on the PHP
function exec to execute commands directly on the system (like in the case of FluxBB),
our approach cannot remove it. To mitigate attacks using this functionality, approaches
to monitor such remaining functions can be deployed additionally [143].

We showed that the concept of our approach is capable of working with script inter-
preters such as PHP and Ruby. However, as script interpreters have different internal
structures, our approach cannot be used directly with another interpreter such as Python.
To support it, domain knowledge of the interpreter’s internal workings has to be integrated
(i.e., the mapping of script functions to native code functions). As this merely means that
additional engineering effort is needed to support other interpreters, it does not constitute
a limitation of the general concept of our approach.

Another limitation is that each application needs its own customized libraries. As
a result, when running multiple services like a web application in combination with a
database server, both need their own tailored libc (or combine their analysis results to
create one libc for both applications). On first glance, this seems infeasible for a real-world
scenario. However, the recent trend to separate each part of a service into a container,
such as Docker [52] (which uses Alpine Linux with musl-libc for official containers), makes
our approach applicable for real-world scenarios. When running a web application, one
container can contain the web server as well as a script interpreter (e.g., PHP) with a
shared application-specific software stack and another container the database server with
its own tailored software stack. Thus, enhancing the security mechanism of separating
services with reduced options for an attacker to reuse existing code.

As the evaluation in Section 6.5 has shown, minor manual configuration is still necessary
in some cases. For web applications these were cases where the used static analysis tool
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Parse was not able to process object-oriented programming constructs. However, this is
not a shortcoming of our approach, but just a limitation of the used analysis tool. Using
a different analysis tool that is capable of handling object-oriented programming like
RIPS [131] solves this problem. Minor manual configuration was also necessary for both
tested libc versions. These were either cases that LLVM could not handle due to assembly,
functions that are called by the loader, or functions that were resolved dynamically during
runtime by the loader as explained in Section 6.4.1. These cases require more engineering
work and do not constitute conceptual limitations of our approach. Assembly directly used
in the source code can either be lifted to LLVM IR with tools such as McSema [151] or
processed separately. Entry point functions called directly by the loader can be whitelisted
initially by just adding the names of the C specific starting functions (e.g., start). We
did not do this to have a complete evaluation. Dynamically resolved functions can be
addressed by integrating a data-flow analysis which ends in the corresponding library
functions (e.g., dlsym). However, solving this in general is hard since the only case we
encountered used a self-implemented function of the dlsym functionality to resolve the
function pointer. Hence, our approach can be seen as a first step to an automated way to
create application-specific software stacks.

An additional use case for our approach are restricted script interpreter environments
that execute user provided untrusted scripts such as Google App Engine [71]. These script
interpreters prevent internally the usage of specific sensitive functions from being executed.
However, Park et al. [118] presented an attack with a restricted attacker model that is
able to rewrite bytecode of functions to execute these sensitive functions and therefore
bypassing the restriction. By applying our approach for an application-specific script
interpreter, these restricted functionalities are completely removed from the interpreter
and hence such an attack cannot use them.

Our current prototype focuses on removing unused code from shared libraries and script
interpreters written in C. However, the compiler extension does not support shared li-
braries and script interpreters written in C++. To support C++, our approach has to be
able to handle virtual function tables (vtables), which are used on a low-level to imple-
ment polymorphism. A naive approach would be to whitelist all functions that are part
of a vtable. However, this would decrease the precision of the code debloating and heavily
overestimates the used functions. A better way would be to improve the static analysis to
only keep functions in the vtable that are actually used. For this to work correctly, our
approach has to track the data flow of vtables precisely to identify all used functions and
must be able to modify entries in the vtables to remove unused ones.

Our approach uses a flow-insensitive analysis to find function pointer targets with which
we did not encounter any misses during our evaluation. However, the C programming
language allows constructs that do not provide sufficient meaningful information in LLVM
to determine the possible targets. In these edge cases, a more sophisticated points-to
analysis has to be implemented like the one developed by Emami et al. [56].
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6.7 Related Work

Debloating software is an appealing approach to thwart attacks and we now discuss works
closely related to ours. Based on the observation that an application only uses a small
part of the code provided by a shared library, Quach et al. [129] presented a debloating
approach. They developed a compiler extension that adds metadata to an ELF binary
(application and shared libraries) about the location of functions and their dependencies.
On execution of an application, the loader writes the shared library into memory and then
removes all functions that are not used by the application by overwriting them. However,
though the analysis is similar to the presented one, their approach is only applicable to
native code applications and does not work with applications written for a script inter-
preter.

JRed [82] is an automated approach to remove unused code from Java applications. It
analyzes the bytecode of an application and removes unused code in the application itself
and core libraries of the JRE. However, it is only capable of handling Java bytecode and
ignores native code libraries during its analysis. Since JRed only targets Java bytecode,
it does not tackle challenges like indirect control-flow transfers through function pointers
as done by our approach. Landsborough et al. [94] presented an approach to remove un-
wanted functionalities from binary code by using a genetic algorithm. Since it works on
traces obtained via dynamic analysis, it needs test cases that execute every functional-
ity the target application should keep. If the set of test cases is not complete, the code
corresponding to a needed but not tested functionality is removed and thus breaks the
application. Additionally, it does not scale and did not even terminate when removing a
feature from the echo application of coreutils. Chisel [76] aims to support programmers
to debloat programs. It needs the source code and a high-level specification of its func-
tionalities to remove unwanted features with the help of delta debugging. A similar goal
is pursued by Sharif et al. [137] and their prototype implementation TRIMMER, a LLVM
compiler extension. With the help of a user-provided manifest about the desired features,
it tries to remove unwanted functionalities to debloat the application. A binary-only ap-
proach targeting specifically applications using a client-server architecture is presented by
Chen et al. [32]. Their approach uses binary-rewriting techniques and a user-provided list
of features with corresponding test cases to execute those to customize the target appli-
cation. BinRec [91] also aims at debloating already compiled applications. It is based
on LLVM and needs to lift the target binary into the LLVM IR before it can perform its
transformations. Since automatically removing features from an application on the binary
level is prone to errors, BinRec also provides a fallback mechanism to use removed code
from the original binary. In contrast to our approach, these approaches focus on removing
features from a target application itself, while we aim to remove unused functionalities
from libraries and script interpreters.

An approach to debloat the Linux kernel was presented by Kurmus et al. [92]. Their
approach focuses on optimizing the configuration for the Linux kernel to remove unneces-
sary features at compile time. This work is orthogonal to ours and can further improve the
security of the system by not only tailoring the userspace software stack in an application-
specific way, but also optimizing the Linux kernel to target a specific application.
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6.8 Conclusion and Future Work

In this chapter, we presented an approach to compile shared libraries tailored to a specific
application by removing unused code from them. Since large real-world applications, such
as the PHP interpreter, do not even use half of the provided functions in a shared library,
we showed that debloating reduces the choices an attacker has for code-reuse attacks
significantly. Furthermore, we demonstrated that with the help of domain knowledge, our
approach is also capable of tailoring a script interpreter to a script application (i.e., a web
application).

We evaluated our prototype implementation of the proposed approach on large, real-
world native applications using the libc and on large web applications using the PHP
interpreter. We demonstrated an application-specific software stack tailored to a Word-
press installation (customized PHP interpreter, libc tailored to web server and interpreter),
and showed a significant code reduction.

In terms of future work, it would be interesting to add C++ support to our compiler
extension. This requires to support object-oriented programming constructs as well as
exception handling. Since popular applications, such as the JavaScript run-time environ-
ment Node.js, are written in C++, this extension would allow debloating of a broader set
of programs.
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In this thesis, we explored new automated program analysis approaches that can help to
secure software systems. To this end, we developed four new analysis techniques that
identify constructs that are relevant for hardening the program.

First, we presented the design of an analysis to find PRNG and CHF implementations
in binary executables reliably. This analysis approach works generically without relying
on magic constants or other implementation-specific artifacts. To this end, we investigated
various PRNG and CHF implementations in popular cryptographic shared libraries and
created an interaction model encompassing both algorithm types. Based on these insights,
we implemented a prototype called TropyHunter. We thoroughly evaluated TropyHunter
on a diverse set of open- and closed-source programs demonstrating its accuracy. This work
showed that it is possible to identify PRNG and CHF implementations fully automated in
a binary program and, thus, automates the initial step of a security assessment. Since our
approach works in a generic way, it also can detect future algorithms without modifications.

One limitation encountered during the evaluation of TropyHunter was that analysis
approaches working mostly in a static way have problems handling function pointers.
Since C++ code utilizing polymorphism is implemented with function pointers on the
binary level, we developed an analysis approach reconstructing C++ class hierarchies in
a practical and efficient way. To this end, we created a way to find vtables in binary
programs which contain the function pointers used by polymorphic constructs. With
the help of these vtables, we developed a static analysis technique tracking the data
flow of objects through the binary while taking C++ characteristics for polymorphism
into account. Based on these characteristics, we were able to deduce the relationship
of classes and hence recover their hierarchies. We implemented a prototype called Marx
targeting large applications based on these analysis techniques. The evaluation showed the
precision of the class-hierarchy reconstruction and applicability to real-world applications
(e.g., MySQL Server). To demonstrate the analysis results are precise enough to build
security applications on top of it, we created two defenses utilizing them: vtable protection
and type-safe object reuse. Overall, this work showed an automated way to reconstruct
C++ constructs that makes the analysis process of binary executables more involved for an
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analyst and even impossible for most analysis tools. Hence, this work provides a building
block for future analysis techniques to build upon.

Binary-only defenses that target to restrict virtual callsites of C++ programs to a set
of valid targets still leave wiggle room for an attacker. Although the evaluation of Marx
showed an improvement for these valid target sets, an imprecision remains. Therefore, we
developed vps, a binary-only defense mechanism against C++ vtable-hijacking attacks.
In contrast to other related work constraining virtual callsites to a set of valid targets,
vps restricts virtual callsites to only use objects created at valid creation sites (i.e., con-
structors). This sidesteps the accuracy problems of binary analyses and by protecting
objects at creation time generates a direct mapping between object initialization sites and
reachable virtual callsites. To extract the information needed for this defense from binary
executables, we refined Marx ’s vtable identification approach. Additionally, we created
novel analysis techniques to identify virtual callsites precisely. While related work assumes
the absence of false-positive virtual callsites that would break the application, we devel-
oped a dynamic instrumentation approach capable of handling false positives by analyzing
not yet verified virtual callsites. The evaluation demonstrated the accuracy of vps and,
thus, the high level of protection it provides. Furthermore, it uncovered imprecisions in
the source-based approach VTV which is considered among the state-of-the-art for C++
defenses. Overall, this work showed that it is possible for binary-only approaches capa-
ble of handling C++ low-level constructs to almost reach the degree of protection that
a source-based approach has. Additionally, it demonstrated the importance of handling
false-positive analysis results to not break the application.

Finally, we described a novel approach capable of reducing unused code in shared li-
braries and script interpreters. While the previously presented defense approaches were
focusing on preventing the exploitation of a vulnerability via vtable-hijacking attacks, this
approach aims to remove the available code an attacker can leverage for code-reuse at-
tacks. To this end, we created a compiler pass capable of removing unused code from
shared libraries during compilation time without resorting to static linking. Moreover,
with the help of domain knowledge, this compiler pass can also remove unused function-
alities from script interpreters. The evaluation demonstrated the effectiveness of the code
reduction: large applications such as the PHP interpreter do not even use half of the
provided functions in the libc. Furthermore, the evaluation showed that in some instances
entire classes of functionalities in an interpreter, such as executing shell commands, can
be removed completely. Overall, this work provides a method of combining code reduction
and the manageability of software updates. It further demonstrated that it is possible to
remove unused code from an interpreter.
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