
RUHR-UNIVERSITÄT BOCHUM
Horst Görtz Institute for IT Security

Technical Report TR-HGI-2016-002

Probfuscation: An Obfuscation Approach using

Probabilistic Control Flows

Andre Pawlowski, Moritz Contag, Thorsten Holz

Chair for Systems Security

Ruhr-Universität Bochum TR-HGI-2016-002
Horst Görtz Institute for IT Security 1st July 2016
D-44780 Bochum, Germany

Probfuscation: An Obfuscation Approach using
Probabilistic Control Flows

Andre Pawlowski, Moritz Contag, and Thorsten Holz

Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
{firstname.lastname}@ruhr-uni-bochum.de

Abstract. Sensitive parts of a program, such as proprietary algorithms
or licensing information, are often protected with the help of code ob-
fuscation techniques. Many obfuscation schemes transform the control
flow of the protected program. Typically, the control flow of obfuscated
programs is deterministic, i. e., recorded execution traces do not differ
for multiple executions using the same input values. An adversary can
take advantage of this behavior and create multiple traces to perform
analyses on the target program in order to deobfuscate it.

In this paper, we introduce an obfuscation approach which yields proba-
bilistic control flow within a given method. That is, for the same input
values, multiple execution traces differ, whilst preserving semantics. This
effectively renders analyses relying on multiple traces impractical. We
have implemented a prototype and applied it to multiple different pro-
grams. Our experimental results show that our approach can be used to
ensure divergent traces for the same input values and it can significantly
improve the resilience against dynamic analysis.

1 Introduction

Obfuscation (lat. obfuscare = darken) is the art of disguising a given system
such that the analysis becomes harder. In the area of software engineering, ob-
fuscation can be used on either the source code or binary level to obscure the
code or data flow. Generally speaking, the goal is to hamper reverse engineer-
ing. Code obfuscation plays an important role in practice and such techniques
are widely used. On the one hand, obfuscation techniques can be used to pro-
tect programs from reverse engineering or to at least increase the costs for such
an analysis. Examples include protection systems for sensitive parts or propri-
etary algorithms of a given program, or digital rights management systems that
contain licensing information. On the other hand, obfuscation is widely used by
attackers to impede analysis of malicious software such that antivirus companies
have a harder time to analyze new samples. As a result, many different kinds of
obfuscation techniques were proposed in the last years (e. g., [1–4]). Note that
all obfuscation techniques have one constraint in common: the transformations
used to obfuscate the program must ensure that the semantic meaning of the
program is not changed.

Probfuscation: An Obfuscation Approach using Probabilistic Control Flows 3

Current state-of-the-art obfuscation techniques translate the target program’s
code into custom bytecode [6, 7]. This bytecode is generated specifically for the
obfuscated program and an interpreter is embedded which handles execution
of said bytecode. When analyzed statically, the translation to an unknown in-
struction set forces an analyst to examine the bytecode interpreter first, before
actually reverse engineering the original algorithm. Because obfuscation schemes
are often difficult to analyze statically, most deobfuscation approaches make use
of dynamic analysis [8–10]. A drawback of current obfuscation techniques is the
fact that the control flow does not differ for multiple program executions when
using the same input values. Thus, it is easier for an analyst to monitor con-
trol flow, which exposes parts of the semantic of the target program. Note that
state-of-the-art deobfuscation tools utilize a dynamic trace of the program to
reconstruct an unobfuscated version of the program.

In this paper, we propose a novel obfuscation approach that tackles the afore-
mentioned problem. Our obfuscation scheme is constructed in such a way that
multiple traces of the same function with the same input values lead to different
observed control flows, whilst preserving semantics. Our approach is inspired by
the idea of Collberg et al. [11], which uses opaque predicates constructed using a
specifically crafted graph data structure. However, their technique is based on a
problem that is only difficult to tackle when the attacker is limited to static anal-
ysis. Hence, if an analyst employs dynamic analyses, she can easily determine
the value of an opaque predicate which has been executed in the recorded trace.
In an empirical evaluation, we show that our proposed obfuscation approach
successfully introduces probabilism to the control flow of the target program.
Thus, it thwarts dynamic analysis operating on multiple executions of the pro-
tected program significantly and does not focus solely on static analysis like
other state-of-the-art obfuscation approaches [2, 3, 6, 7].

In summary, we make the following contributions:

– We present a novel obfuscation scheme that introduces probabilistic con-
trol flow, but still ensures that the code’s semantics are preserved. Due the
probabilistic nature of our scheme, it can withstand proposed deobfuscation
approaches that rely on a trace-based analysis of several execution runs.

– We implemented a proof-of-concept obfuscation tool in the managed code
programming language C# targeting .NET applications. The tool is freely
available at https://github.com/RUB-SysSec/Probfuscator.

– We evaluate the prototype and demonstrate that probabilistic obfuscation is
a viable obfuscation technique to protect sensitive parts of a given program.

This technical report is an extended version of the work presented at DIMVA
2016. This report provides more implementation details and evaluation results.

2 Technical Background

The transformations applied by the obfuscation process aim to hide the pro-
gram’s semantics. If successful, the analysis and deobfuscation effort is consider-

4 Andre Pawlowski, Moritz Contag, and Thorsten Holz

ably higher than feasible for an analyst. In the following, we refer to an analyst
as adversary given that we study an obfuscation algorithm.

The main class of obfuscation schemes, as well as ours, target the control flow
of the target program since it contains vital information about the general struc-
ture of a program and exposes high-level constructs such as loops or if-clauses.
Doing so, these obfuscation schemes thwart attempts to statically analyze the
target program. One building block used by said schemes is the construct of
opaque predicates [11]. An opaque predicate is a boolean expression whose value
is known at obfuscation time. However, its value is difficult to infer by an (auto-
mated) attacker. Collberg et al. introduce three types of opaque predicates which
we will refer to as true opaque predicates, false opaque predicates, and random
opaque predicates, whose expressions evaluate to the boolean values true, false
or evaluate randomly to either, respectively [11]. In the following, we will denote
by (always) taken branch the branch of an opaque predicate which is known to
be always taken.

In case of a true opaque predicate, its taken branch will always be taken, as it
corresponds to the predicate evaluating to true. Its other branch also has to point
to meaningful code, though, and points to a block of dead code. From the ob-
fuscator’s point of view, it should be difficult to distinguish dead from live code.
False opaque predicates operate analogously. Random opaque predicates differ
in that their expression yields a random value and both branches may be taken.
Consequently, the code blocks the branches point to have to be semantically
equivalent for the obfuscation to be semantics-preserving. A resilient random
opaque predicate aims to hide this fact by employing several transformations on
the blocks to make comparison of their semantics harder.

Attacks against opaque predicates make use of data flow analysis and try
to prove that the expression the predicate checks are in fact constant. More
resilient opaque predicates hence build expressions involving pointer aliases by
making use of the hardness of the intraprocedural may-alias analysis problem [12].
This problem states that it is generally undecidable if two given pointers into a
complex data structure alias each other, i. e., point to the same location in the
structure. While algorithms that tackle the problem do exist, many of them are
incapable of handling special cases like recursive or cyclic data structures [11].

3 Adversary Model

The goal of the adversary is to analyze and understand a protected algorithm
inside the obfuscated method (e. g., a serial key check algorithm or a propri-
etary algorithm embedded in the method). To this end, the adversary has to
understand the effect of the input values on the program’s observable behavior,
among others. We assume an adversary that bases her deobfuscation attempts
solely on dynamic analysis techniques, a common attacker model found in recent
literature on attacks against obfuscation schemes [8–10].

The adversary is able to record multiple traces of the obfuscated method
for any inputs as well as set breakpoints on specific points in the control flow.

Probfuscation: An Obfuscation Approach using Probabilistic Control Flows 5

Program Class Method

1) Adding
Properties

class Bar {
/*...*/

class Bar: Ione, Itwo, /*...*/ {
/*..*/

2) Graph
Generation

3) Adding
Initialization Code

6) Injecting
Opaque Predicates

7) Generating
Dead Code

8) Transforming
Basic Blocks

public void foo {
 iNode ptr = this.graph; /*...*/
 int a = 4; /*...*/

public void foo {
 int a = 4; /*...*/

... dead

dead
a
b
c

d

b

a

c

MethodMethodMethod

Method

4) Linking
Basic Blocks

5) Transforming
Control Flow

Method

deadb

a

b

a

Fig. 1. Overview of the eight steps of the obfuscation process. On the top, it is noted
which entity is targeted by the current obfuscation step.

Note that deobfuscation with the help of static analysis is already tackled by
obfuscation techniques proposed previously [11–14], which are orthogonal to our
approach. However, the adversary is subject to time constraints in her analysis.
Given that modern programs change their protection implementations with the
release of new versions (e. g., anti-cheat systems, [15]) and recent deobfuscation
approaches work solely on execution traces [8–10], we deem these assumptions
reasonable.

4 Approach

We propose a novel obfuscation method based on opaque predicates that yields
probabilistic control flow whilst preserving semantics. It can be applied to pro-
tect sensitive algorithms from dynamic analyses performed by an adversary,
thus thwarting recently proposed deobfuscation approaches [8–10]. Our approach
makes use of an artificial graph, called obfuscation graph, whose nodes consist of
objects of classes provided by the target program. Each protected method in the
target program holds a pointer to the graph, linking both together. Each basic
block of the protected method is linked to one or multiple nodes in the obfus-
cation graph. During the execution of the protected method, the pointer to the
obfuscation graph is moved from node to node. The obfuscation only forwards
the pointer to nodes linked to the basic blocks which are to be executed next.
With the help of opaque predicates, the scheme ensures that tampering with the
link most likely results in a crash of the program.

The obfuscation scheme consists of eight steps which are illustrated in Fig-
ure 1 and shortly described in the following.

6 Andre Pawlowski, Moritz Contag, and Thorsten Holz

1. Adding properties. The scheme uses properties of the nodes in the obfusca-
tion graph for opaque predicates. In order to increase the number of possible
opaque predicates, additional properties are added to the nodes.

2. Generating the obfuscation graph. The obfuscator then builds the obfusca-
tion graph with the help of the properties. It is then added to the class that
contains the method that should be protected.

3. Adding initialization code. This step adds additional logic to initialize the
obfuscation scheme for all methods that are to be protected.

4. Linking basic blocks. The basic blocks of the control flow graph (CFG) are
linked to the nodes of the obfuscation graph. This connection is needed to
ensure correct evaluation of the boolean expressions of the opaque predicates.

5. Transforming control flow. The CFG of the method is transformed with
the help of the linked obfuscation graph in such a way that multiple paths
through the CFG yield the same output.

6. Injecting opaque predicates. Opaque predicates are injected that only eval-
uate correctly if the pointer to the obfuscation graph points to the correct
location during the execution.

7. Generating dead code. Dead basic blocks added during the insertion of
opaque predicates are filled with artificially created code.

8. Transforming basic blocks. The basic blocks themselves are transformed to
obfuscate the method’s original code.

In the following, the eight steps are described in detail.

Adding Properties. In order to provide a diverse range of opaque predicates
for the same node, the nodes should either have a large number of properties
or a property which allows a wide range of different states. Note that all nodes
in the obfuscation graph have to implement the same properties, which may
be uncommon for a set of entities in non-obfuscated applications. Therefore, the
obfuscator adds a set of random properties to all possible nodes of the obfuscation
graph (i. e., to all classes, as a node is an object of a class). However, the random
properties use different states.

For our obfuscation approach, a property can be anything that can be added
to all nodes of the obfuscation graph and can hold different states, so that boolean
expressions for opaque predicates can be built. For example, common attributes
or metadata of a class, like implemented interfaces, can be used. The state of an
interface would be a boolean variable indicating whether the class implements
the interface.

Generating the Obfuscation Graph. The obfuscation graph is embedded
into the class that contains the method(s) that should be protected. If multiple
methods of the same class should be protected, the same obfuscation graph can
be used multiple times. The nodes of the graph consist of objects of different
classes of the target program. Hence, every node is related to a specific class
of the program and therefore has different states for the added properties. The

Probfuscation: An Obfuscation Approach using Probabilistic Control Flows 7

N1

N2 N3

N4 N5 N6 N7

Object: class A
Property states: p=1, q=2, r=3

Object: class C
Property states: p=1, q=1, r=1

Object: class D
Property states: p=3, q=2, r=3

Object: random class
Property states: random

Non-vpath

Object Details

vpath

Fig. 2. An example obfuscation graph with one vpath highlighted in red. All classes
for the nodes are picked randomly by the obfuscator. The classes and properties that
are used for the nodes on the vpath are used to build opaque predicates.

graph is a tree-like graph structure where the leaf nodes have back-edges to the
root of the “tree” (semi-cyclic structure).

The structure of the obfuscation graph allows traversal on multiple paths.
The obfuscator chooses random paths through the obfuscation graph and de-
clares them to be vpaths (as in valid paths). The number of vpaths is given by
the user. An example for an obfuscation graph is shown in Figure 2. Classes are
randomly assigned to the nodes of the graph. The property states of the nodes
on the vpaths are later used to build opaque predicates.

The obfuscation graph is parametrized by its depth and dimension. The depth
specifies the maximum length of a path whereas the dimension specifies the
number of children of each node. These parameters can be chosen arbitrarily
and determine the obfuscation graph’s layout. An evaluation of the effect of
chosen parameters is given in Section 6.1.

Adding Initialization Code. Because the opaque predicates use properties
of the nodes on the vpaths, each method to protect needs a pointer into the
obfuscation graph. In order to be consistent between executions, the pointer has
to point to the same starting point each time. Therefore, in the beginning of the
method, the pointer is reset to the root node of the graph. This pointer realizes
the link between executed basic blocks and the nodes in the obfuscation graph.

Obviously, a single vpath can be easily monitored by an adversary using
dynamic analysis. Thus, at least two distinct vpaths have to exist in the graph.
Probabilistic control flow can then be ensured by letting the obfuscated method
determine randomly at runtime which vpath is used. Therefore, a vpath state is
added to each method which determines the vpath used in current transition. It
is initialized randomly in the beginning of the method at runtime.

8 Andre Pawlowski, Moritz Contag, and Thorsten Holz

N1

N2 N3

N4 N5 N6 N7 BB8

BB6

BB5

BB7

BB4

Obfuscation Graph CFGNon-vpath

vpath

Branch

Link to
Node

Fig. 3. An example relation between the obfuscation graph and the method’s control
flow. On the right side, a part of the control flow graph is shown. On the left side,
the obfuscation graph is shown, where the vpath is highlighted in red. The relation
between the nodes of the vpath and the basic blocks is highlighted in green.

Linking Basic Blocks. The nodes on the vpaths are linked to basic blocks
in the CFG. Detailed information about the links are used later in the obfusca-
tion process to transform the control flow of the method and to build opaque
predicates (e. g., the properties used to construct the opaque predicates). This
information is only needed during the obfuscation process. During execution of
the method, only the states of the properties are used with the help of opaque
predicates to position the pointer into the obfuscation graph. The detailed in-
formation is merely kept at obfuscation time.

An example relation of the obfuscation graph and the CFG of the method
to protect is shown in Figure 3. The obfuscator links the first basic block of
the CFG to the root node of the obfuscation graph (where the first block is the
one executed first once the method is called). This is the initial position of the
pointer into the graph, which is set by the initialization code added previously.
The algorithm then iterates over all remaining basic blocks of the CFG and links
each basic block to a node on the vpath of the obfuscation graph. During this
process, the obfuscator checks for each basic block which node the preceding
block is linked to. It then decides randomly to link the current processed basic
block to the same node or to the next node on the vpath. This is done for each
vpath the obfuscation graph possesses. Hence, each basic block has a link to one
node of each vpath. The algorithm terminates when all basic blocks are linked
to a node of the obfuscation graph.

Probfuscation: An Obfuscation Approach using Probabilistic Control Flows 9

B

A

B

A

B

A

B'

1) Add switch logic

Here: duplicate
target basic block

2) Duplicate or
select random equal

target basic block

3) Add pointer
move logic to
each branch

Here: two
vpaths

„vpath: 1“ „vpath: 2“
„vpath: 1“ „vpath: 2“

Here: only needed
for „vpath 2“

B

A

B'

„vpath: 1“

move

„vpath: 2“

„vpath: 2“

4) Add logic to switch
the used vpath
randomly or not

Fig. 4. The control flow transformation process operating on two consecutive basic
blocks A and B. The target of the transformation is highlighted in red. The caption
“vpath: X” denotes the control flow path corresponding to the respective vpath in the
obfuscation graph.

Transforming Control Flow. The outgoing branches of each basic block are
processed exactly once. In the following, we describe the control flow transfor-
mation process on the basis of the example shown in Figure 4:

1. Each basic block has a link to one node in every vpath. The vpath state
(introduced to the protected method while adding the initialization code)
determines which of the vpaths is currently active during execution. In or-
der to divert the control flow depending on the currently used vpath, logic
must be added that switches the control flow accordingly. Hence, the obfus-
cator replaces the branch of basic block A to B with one branch for every
existing vpath (in this example there are two vpaths). At runtime, the branch
corresponding to the vpath state is taken.

2. In order to avoid all of these new branches having the same target basic block,
the obfuscator either duplicates the target basic block or randomly chooses a
semantically equivalent basic block. The list of semantically equivalent basic
blocks consists of the target basic block itself and all duplicates of this basic
block. In this example, the basic block B is duplicated and the new basic
block B’ is executed when vpath 2 is currently active.

3. The source basic block of a branch and the target basic block may be linked
to different nodes on the vpath. Hence, the pointer into the obfuscation graph
has to be moved from the node the source basic block is linked to to the node
the target basic block is linked to (compare Figure 3). As depicted in our
example, basic block B is linked to the same node on vpath 1 as basic block
A, but basic block B’ is not linked to the same node on vpath 2 as A. Thus,
a move block has to be inserted in between A and B’. Said block moves the
pointer into the obfuscation graph to point to the node B’ is linked to.

4. The current approach would not yield probabilistic control flow at all, as the
vpath state is only set once in the initialization code of a method. Hence,
for each outgoing branch of a basic block, logic may be added (determined
during the obfuscation process) that may switch the vpath the method cur-
rently follows. The switching decision is made at runtime and at random. If
switching occurs, the pointer into the graph has to be moved according to
the chosen vpath.

10 Andre Pawlowski, Moritz Contag, and Thorsten Holz

Injecting Opaque Predicates. In this step of the obfuscation process, the
obfuscator adds opaque predicates to the method that should be protected. For
each basic block, the obfuscator randomly decides whether to inject an opaque
predicate into the incoming branch. If an opaque predicate is injected, the ob-
fuscator randomly decides to either create a true, false, or random opaque pred-
icate. For the true and false opaque predicates, the never taken branch points
to a newly created basic block that is marked as dead.

During the execution, the method’s pointer into the obfuscation graph has
to point to the exact node in the active vpath that is linked to the currently
executed basic block. For each opaque predicate, the properties that are given by
this node are used for its boolean expression. For example, with the obfuscation
graph in Figure 2, the obfuscator can build a true opaque predicate for a basic
block that is linked to node N1 with the boolean expression q == 2. Note that
this boolean expression is not unique to this node in the obfuscation graph, since
it is also fulfilled by node N7 (and probably by other nodes that do not reside
on the vpath). This design decision was made to ensure that an attacker is not
able to distinctively connect the opaque predicate to a node in the obfuscation
graph. Even if the focus of our approach lies on dynamic analysis, the obfuscation
scheme should withstand a shallow static analysis.

Furthermore, true and false opaque predicates are deterministic and do not
contribute to the probabilism of the control flow. But since the attacker is allowed
to conduct a manual dynamic analysis and change the program state during the
execution, it adds a tamper proofing mechanism: if the attacker changes the
pointer to the obfuscation graph or the obfuscation graph itself in order to affect
execution, one of the following opaque predicates would divert the control flow
and with a high probability crash the program. This is an advantage over a solely
use of random opaque predicates to create probabilistic control flow.

Generating Dead Code. Basic blocks marked as dead are filled with artifi-
cially generated code. During this process the obfuscator randomly chooses the
terminating instruction (called exit) of the dead basic block. If the chosen exit is
a branch, the target can either be an arbitrary (existing) basic block in the CFG
or a new dead basic block. If the target is a new dead basic block, the process is
repeated. Otherwise, if the target is an existing basic block, the interconnectivity
of the method’s CFG is increased.

Transforming Basic Blocks. The transformation of basic blocks is necessary
because the algorithm duplicated basic blocks during the control flow transfor-
mation step. If no transformation was applied, a pattern matching of basic blocks
could be sufficient to detect the always taken branch of an opaque predicate.

In order to make semantically equivalent blocks harder to detect, the obfus-
cator employs standard obfuscation techniques [16]. We focus on those affecting
control flow (like splitting blocks or outsourcing the last instructions to a com-
mon block for a subset of blocks), but other techniques can be applied as well.

Probfuscation: An Obfuscation Approach using Probabilistic Control Flows 11

public interface Ibase { /∗ . . . ∗/ }
public interface Itwo : Ibase { /∗ . . . ∗/ }
// . . .
foreach(Ibase itemVar in baseItems) {
if((itemVar as Itwo) != null) {
/∗ Do something spec ia l with itemVar . ∗/

}
}

Listing 1.1. C# source code depicting a situation where control flow is dependent on
implemented interfaces.

This includes instruction re-ordering, replacement of instruction sequences with
equal ones, or usage of opaque expressions.

5 Implementation

Our prototype obfuscator is written in C# and targets .NET programs. It uses the
CCI Metadata libraries [17] in order to transform the target program. For now,
the prototype of our obfuscation scheme operates on the bytecode of individual
methods a user wishes to protect. In general, however, the approach is not limited
to bytecode or methods only (or managed code programming languages). As
mentioned in Section 4, the user chooses the method(s) he wants to protect.
Note that typically only a very small number of methods in a given software
project contain sensitive and valuable information that need to be protected.

We implemented the prototype following the design described in Section 4.
All random numbers that are required during the obfuscation process are fetched
from the same pseudo random number generator (PRNG). Hence, the seed of
the PRNG can be used as a key for the obfuscation. This means the same seed
used for the same target method results in the same obfuscated output. In the
following, we describe specifics of our implementation.

5.1 Adding Properties

Our approach uses properties that each node in the obfuscation graph possesses.
Since we focus on managed code programming languages, we leverage the meta-
data of the nodes in the obfuscation graph. Specifically, we use the interfaces a
class implements. Boolean expressions are created that are used for constructing
opaque predicates. A predicate checks a state of a property. In this case, whether
a node implements a specific interface or not. Since managed code programming
languages like CIL or Java allow classes to implement multiple interfaces, opaque
predicates can use the same object to check for different interfaces.

The addition of interfaces to classes can cause problems with polymorphic
constructs. Hence, our obfuscator adds random self-generated interfaces that do
not exist in the non-obfuscated program.

Consider the example given in Listing 1.1. The loop iterates over a list of
items named baseItems whose items implement the Ibase interface. If an item

12 Andre Pawlowski, Moritz Contag, and Thorsten Holz

also implements the Itwo interface, control flow enters the body of the if state-
ment and operates on said item. Now consider the scenario where the obfuscator
adds interfaces to all classes of the target program. If the Itwo interface is added
to a class that is part of the baseItems list, control flow will enter the if state-
ment’s body. However, this control flow branch was not intended by the author
of the program and may crash it. Hence, our obfuscator resorts to adding random
self-generated interfaces.

Still, if an author wishes to add interfaces that look as plausible as possible,
our prototype implementation can use already existing interfaces rather than
generating them from scratch. Our base set of interfaces consists of all interfaces
that are introduced by the target program itself and a list of interfaces provided
by the .NET System namespace. From this base set, the obfuscator randomly
chooses interfaces that are added to the classes of the target program. This
can cause problems with polymorphic constructs. To avoid this, the user has
to choose the interfaces the obfuscator is allowed to add. Since we consider the
user to be the author of the target program, he should know the interfaces that
potentially influence control flow.

5.2 Generating Dead Code

The artificially created code that is used for the dead basic blocks has to look
as legitimate as possible. If the instructions of a dead basic block do not fit, the
block can instantly be recognized as dead block and therefore be ignored during
the analysis process. Furthermore, additional obfuscation techniques applied in
order to protect against an adversary with static analysis capabilities can lead
to difficulties when the dead basic blocks contain illegal instruction sequences.

In order to make the generated dead code as plausible as possible, the dead
code generation process can use valid existing basic blocks as templates. For
example, this is used when generating code for the never taken branch of an
opaque predicate. The generator uses the basic block on the always taken branch
of the opaque predicate as template. This way, we make sure that both sides
of the opaque predicate look plausible, as the other block is a legitimate one.
Therefore, an analyst must understand the semantics of the basic blocks first in
order to distinguish live and dead code in basic blocks.

5.3 Probabilistic Control Flow

The vpath through the obfuscation graph that is used for the current run is
randomly determined during execution of the protected method. This random-
ness is used to implement non-deterministic control flow. We stress that these
random numbers are created during the execution of the obfuscated method and
not during the obfuscation process.

In our prototype implementation, the random number generator of the .NET
System namespace is used. This implementation is sufficient for our proof-of-
concept tool, but not for a real-world application: an attacker can potentially
determine the points in the control flow which generates random numbers and

Probfuscation: An Obfuscation Approach using Probabilistic Control Flows 13

Table 1. Size of the obfuscation graph and its dependency to the graph’s depth and
dimension.

Depth Dim. |Nodes| Depth Dim. |Nodes| Depth Dim. |Nodes|
6 2 63 7 2 127 8 2 255

6 3 364 7 3 1,093 8 3 3,280

6 4 1,365 7 4 5,461 8 4 21,845

6 5 3,906 7 5 19,531 8 5 97,656

6 6 9,331 7 6 55,987 8 6 335,923

Table 2. Relation between the number of vpaths and the size of the obfuscated method.

vpaths Basic Blocks Growth Factor Branches Growth Factor

2 304 60.8 357 71.4

3 989 197.8 1,205 241

4 2,520 504 3,059 611.8

5 5,963 1192.6 7,272 1454.4

6 15,418 3083.6 18,804 3760.8

7 26,215 5243 31,848 6369.6

replace them with fixed values. A detailed discussion about the random num-
ber generation during the execution of the obfuscated method is provided in
Section 7.3. The prototype implementation of our tool is freely available at
https://github.com/RUB-SysSec/Probfuscator.

6 Evaluation

In this section, we evaluate the prototype of our proposed obfuscation technique.
Since it is hard to evaluate obfuscation techniques in general, we evaluate it using
the four aspects proposed by Collberg et al. [11]:

1. Cost gives a measurement of the time and space overhead that is induced
by the obfuscation technique.

2. Resilience measures how well the protected program resists deobfuscation
attempts.

3. Potency measures how complex the program has become after the obfusca-
tion process.

4. Stealth measures how well the obfuscation blends into the original program.

Given that our obfuscation is parametrized, we evaluate the effect of the
parameters on the obfuscation first. Afterwards, the four aspects cost, resilience,
potency, and stealth are measured.

6.1 Obfuscator Parameters

The obfuscation graph is the only component of the obfuscation scheme that is
memory dependent. Its size is mainly characterized by its depth and dimension.

14 Andre Pawlowski, Moritz Contag, and Thorsten Holz

Table 3. Measurable effects of our obfuscation approach

Program Size (kB) Avg. Creation (ms) Avg. Comp. (ms) Mem. (kB)
Orig. Obfu. Orig. Obfu. Orig. Obfu. Orig. Obfu.

SHA-256 12.3 7,666.7 < 1 3925 785 5658 1,480 28,852

MD5 13.8 7,068.2 < 1 3924 302 491 1,480 28,880

RC4 9.2 7,058.4 < 1 3917 1209 1842 1,488 28,828

Each node of the graph is represented by an object of a class in the target
program and incurs an overhead dependent on the classes that are instantiated.
Table 1 shows the size of the obfuscation graph for a range of parameters.

The length of the vpath is determined by the depth of the obfuscation graph.
The number of vpaths affects the number of possible control flows of the method
for the same input and thus influences the method’s size as well. The effect
of multiple possible control flows is further evaluated in Section 6.3. Table 2
shows the outcome of the obfuscation process for different numbers of vpaths
for the same example method. The original method’s CFG consists of five basic
blocks and five edges. As evident from the table, the growth of the method’s size
proceeds exponentially.

While larger values for the parameters yield better protection levels, one has
to weigh up the desired protection level with penalties in terms of size and speed.
These penalties are evaluated in detail in Section 6.2.

6.2 Measuring Cost

In order to evaluate the cost of the obfuscation scheme on the program, we mea-
sure its performance, file size, and memory consumption during execution. These
values are compared to the execution of the original, unobfuscated program. The
tests were run on an Intel Core i7 870 CPU with 2.93 GHz using Windows 8.1
as operating system (OS). We set the number of vpaths through the obfuscation
graph to six, the depth of the obfuscation graph to seven, and the dimension of
the obfuscation graph to five. The chosen numbers provide a balance between
the penalty introduced by the obfuscation scheme and the protection level that
is provided, as described in Section 6.1. Since obfuscation introduces a perfor-
mance overhead and is therefore usually only used to protect important parts of
the program, we evaluate our approach only on the implementation of certain
algorithms (representative of any intellectual property one wishes to protect).
The results of all test cases are shown in Table 3. Because of its nested loop
structure and variable input length, we deem the SHA-256 hash computation
as best suited to represent a worst case for our obfuscation scheme in terms
of performance penalties. The nested loop structure increases the effect of the
probabilistic control flow and therefore slows down the computation. Therefore,
we describe this test case in detail in the following.

Probfuscation: An Obfuscation Approach using Probabilistic Control Flows 15

File Size. To quantify the cost of our obfuscation scheme on the file size, we
measure both the file size in bytes and the number of instructions of the target
method. In our setting, the size of the original binary is 12,288 bytes and the
obfuscated binary has a file size of 7,666,688 bytes. This implies that the obfus-
cated binary is about 624 times larger than the original binary. The method in
the original binary consists of 84 instructions, which represent 17 basic blocks
and 21 branches. The obfuscated method contains 197,001 instructions, which
represent 42,294 basic blocks and 51,277 branches. Thus, the number of instruc-
tions in the obfuscated method is 2,345 times greater compared to those of the
original method. Note that, as discussed in Section 6.1, the size of the obfuscated
binary highly depends on the parameters chosen for the obfuscator. In order to
ensure a variety of possible control flows, the obfuscator has to clone the basic
blocks of the target method multiple times. Therefore, our obfuscation scheme
also increases the size of the target method multiple times. We stress that the
growth of the size is dependent on the target method and not on the entire
program. A large program has the same growth as a small program if they im-
plement the same method that is the target of the obfuscation. Nevertheless, due
to the available resources of modern devices, we see this growth as acceptable.

Performance. The performance is measured by calculating the SHA-256 hash
of a 10 MB file. In order to compensate for outliers, we repeat the calculation
1000 times and calculate the average of the needed time (this is done for each
algorithm depicted in Table 3). We take two different timings. First, the time
needed for the creation of an object of the obfuscated class is measured, and
second the time needed for the actual computation of the hash. During the
creation of the object itself, the obfuscation graph is built by the constructor of
the class. The creation of the obfuscation graph impacts the overall performance
depending on the parameters specified by the user. Therefore, we also have to
measure the creation and not only the actual computation. Timings are measured
with a resolution of 1 ms.

The original binary takes less than 1 ms for object creation. The obfuscated
binary takes 3925 ms to create the object (and therefore to build the obfuscation
graph). Since we used the same obfuscation parameters for each algorithm tested
in Table 3, the time to build the obfuscation graph is nearly identical. The
calculation of the hash is performed in 785 ms by the original binary, whereas
5658 ms are needed by the obfuscated binary. While the obfuscated SHA-256
algorithm needs around 7 times more time to perform the same calculation, we
stress that this case constitutes a worst case scenario for our obfuscation scheme
in terms of performance. The other algorithms shown in Table 3 do not have
such a high overhead. Again, these values are dependent on the parameters of the
obfuscation graph. While parameters exists for which obfuscation graph creation
consumes less time, the protection level for the obfuscated method is lowered as
well. Additionally, algorithms that are usually protected with obfuscation in real-
world applications are sparsely performed during the execution of a program.
Therefore, we regard the introduced performance penalty as acceptable.

16 Andre Pawlowski, Moritz Contag, and Thorsten Holz

Memory. The only memory dependent component of the proposed obfusca-
tion technique is the obfuscation graph. Therefore, the memory consumption of
the graph is measured after the object of the protected class is created in the
program. The parameters yield an obfuscation graph with 19,531 nodes. The
original program consumes 1,480 kB of memory after the object is created. The
protected program needs 28,852 kB after the target object is allocated. There-
fore, the obfuscation graph needs about 27,372 kB for the used parameters. Note
that the needed memory for one obfuscation graph is constant. Since all algo-
rithms in Table 3 are obfuscated with the same obfuscation parameters, they
have nearly identical memory consumption. Larger applications embedding the
same obfuscation graph will face the same memory requirements. Regarding the
available resources of today’s devices we see the introduced memory consumption
disadvantage as tolerable.

6.3 Measuring Resilience

Resilience measures the resistance of the obfuscation scheme against deobfusca-
tion attempts. Since we focus on thwarting dynamic analysis, we measure the
resilience of our obfuscation scheme by quantifying the probabilistic control flow.
Therefore, we trace the execution of an obfuscated method with the same input
values and compare the similarity of these traces. To this end, we generate a
graph from the traced basic blocks in the obfuscated method and compute the
graph-edit distance between two execution traces using the algorithm proposed
by Hu et al. [18]. The graph-edit distance yields the number of edits needed to
transform one graph into another graph. Edits are node insertions/deletions and
edge insertions/deletions.

We follow the proposal of Chan et al. [19] and normalize the graph-edit
distance such that it computes a similarity score using the following formula:

similarity(G1, G2) = 1−
(

graph-edit distance

|G1|+ |G2|

)
,

where the size of the graph Gi is given by the total number of nodes and
edges and is denoted as |Gi|. The output of the similarity function is a value
between 0.0 and 1.0. A result of 1.0 means that the two graphs are identical,
whereas a result of 0.0 means they are completely different.

Results. As test case we use our running example, the SHA-256 hash computa-
tion. We generated 100 traces by executing the program 100 times in a row with
the same input. Unfortunately, the graph-edit distance calculation is NP-hard in
general [20]. Therefore, we have to choose an input size that creates traces with
graph dimensions that are still comparable. As input data we used 100 bytes
of random data. Since the SHA-256 hash computation operates on blocks of
512 bits, the algorithm runs through multiple iterations until it terminates. As
obfuscation parameters we use the settings evaluated in Section 6.2.

Probfuscation: An Obfuscation Approach using Probabilistic Control Flows 17

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Similarity

0

200

400

600

800

1000

1200

Nu
m

be
r o

f T
ra

ce
s

Fig. 5. The 4,950 similarity values of the traces displayed as a histogram. The bin size
amounts to 0.05. The smallest similarity was 0.35 and the greatest 0.88. The majority
of the values have a similarity of under 0.75.

In total, we calculated 4,950 graph comparisons (as graph comparison of two
graphs is commutative). The greatest similarity of two traces was 88.45%. The
smallest similarity was 35.29%, while the average of all similarities is 69.65%. An
overview of the similarity between the traces is given in Figure 5 as histogram.
As can be seen, most of the similarity values are near the calculated average
value in the range of 60% to 75%.

The smallest trace regarding the number of unique basic blocks visited 359
unique basic blocks and took 367 unique branches. The largest trace reached
1,183 unique basic blocks and took 1,255 unique branches. To our surprise, the
largest trace concerning the number of unique basic blocks is not the largest trace
regarding the number of unique branches. On the other hand, the smallest trace
regarding the number of unique basic blocks is also the smallest one concerning
the number of unique branches. The largest trace regarding the number of unique
branches visited 1,178 unique basic blocks and used 1,258 unique branches. On
average, 753 unique basic blocks were visited and 793 unique branches were taken
by the traces. The number of all visited unique basic blocks and taken unique
branches is given in Figure 6. As evident from the figure, the number of visited
unique basic blocks and taken unique branches correlate. If more unique basic
blocks were executed, more unique branches were used. But still, the number
of basic blocks and branches vary greatly between single executions. The size of
the traces of the other algorithms is discussed in Appendix A.

18 Andre Pawlowski, Moritz Contag, and Thorsten Holz

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80 90

Unique Branches SHA-256
Unique Basic Blocks SHA-256

Fig. 6. The number of unique basic blocks and branches each trace used ordered by the
number of reached basic blocks. The gray + dots depict the used unique branches and
the black x dots show the visited unique basic blocks. On the x-axis the trace number
is given. On the y-axis the number of unique basic blocks/unique branches are given.

These results show that multiple executions for the same input values do not
even once have the same execution path. This effectively hinders deobfuscation
approaches working on multiple traces, such as state-of-the-art deobfuscation
methods like [8]. Also, a manual analysis using breakpoints is rendered unreliable
in presence of the probabilistic control flow, as we explain in Section 7.1.

6.4 Measuring Potency

Potency measures how complex and confusing the program becomes after ob-
fuscation. In order to evaluate the potency of our obfuscation scheme regarding
dynamic analysis, we measure the differences between the original and an obfus-
cated control flow. Therefore, we recorded an execution trace for the original and
the obfuscated program with the same input. During the obfuscation process,
the basic blocks of the original method were marked in order to recognize them in
the obfuscated CFG. Additionally, all semantically equivalent basic blocks were
labeled. This way, we are able to distinguish visited duplicate basic blocks from

Probfuscation: An Obfuscation Approach using Probabilistic Control Flows 19

the original ones. Note that this information is not available for an adversary
trying to analyze the obfuscated method.

In order to quantify the utilization of the different semantically equivalent
basic blocks we visited with respect to all available semantically equivalent basic
blocks and the number of executions, we make the following case distinction:

utilization =

{ |diff|
|exec| , if |exec| < |avail|
|diff|
|avail| , otherwise

,

where |exec| gives the number of times one of the semantically equivalent ba-
sic blocks were visited, |avail| gives the number of available semantically equiv-
alent basic blocks, and |diff| gives the number of visited different semantically
equivalent basic blocks. This way we can differentiate between cases where the
total number of visited semantically equivalent basic blocks is lower than the
available number of semantically equivalent basic blocks and vice versa. Con-
sider for example a case where only one of the available semantically equivalent
basic blocks is executed. If this is the case during multiple iterations of a loop,
its utilization of the available semantically equivalent basic blocks is obviously
not optimal because control flow visits only this available basic block multiple
times. On the other hand, utilization is good if the code contains no loop and
control flow visits only one of the semantically equivalent basic blocks during
the execution only one single time. Therefore, we have to differentiate between
both cases and handle them differently.

Results. Again, we use our running example, the SHA-256 hash computation,
as test case. As input data we used 100 bytes of random data and as obfuscation
parameters we use the settings evaluated in Section 6.2. We recorded a trace
by executing the obfuscated and the original program with the same input. The
resulting traces were compared with respect to their executed basic blocks.

The obfuscation process created an obfuscated method which consists of
31,750 basic blocks and 43,698 branches. The obfuscator cloned the basic blocks
of the original method multiple times during this process. Remember that the
decision if a basic block is cloned is made randomly during the obfuscation
process. The minimum number of semantically equivalent basic blocks in the
obfuscated method amounted to 9 and the maximum number to 43. On average,
the obfuscator created additional 26 semantically equivalent basic blocks for one
basic block in the original method. This means that the control flow has on
average 27 different possibilities per basic block that exhibit the same behavior.

During the execution of the obfuscated method, the control flow has visited
572 relevant basic blocks that contribute to the calculation of the result. These
basic blocks consist of the basic blocks of the original method and transformed
copies of these original basic blocks. Of these 572 visited basic blocks, only 24
of them were basic blocks of the original method. Therefore, only 4.2% of the
executed relevant basic blocks were the basic blocks of the original method. The

20 Andre Pawlowski, Moritz Contag, and Thorsten Holz

utilization of the available semantically equivalent basic blocks range from 12.9%
to 100%. In total, 71% of the available semantically equivalent basic blocks were
utilized during the execution of the obfuscated method. A detailed overview of
the results of all tested algorithms is depicted in Table 4 in Appendix B.

The results show that an execution of the obfuscated method uses a variety
of different but semantically equivalent basic blocks to compute its result. Hence,
the number of basic blocks that are actually involved in the computation has
been increased by our obfuscation scheme and thus the complexity of the control
flow.

6.5 Measuring Stealth

Stealth measures the difficulty for an adversary to determine if the given method
is obfuscated, i. e., how well the obfuscated entity fits in legitimate code. Al-
though stealth is not an objective of our approach, we evaluate it for the sake of
completeness. Recently published obfuscation papers measure this aspect based
on the distribution of instructions [21–23]. However, as Collberg et al. [11] de-
scribe it, stealth is a context-sensitive metric. Hence, instead of pursuing a static
approach for evaluating stealth, we consider the dynamic behavior of the obfus-
cated program. This fits our general focus on dynamic analysis.

Given that our approach is by design supposed to yield different execution
traces for the same input, stealth is inherently hard. An adversary only has to
execute the program two times with the same input and compare the recorded
execution traces. If they differ, the adversary can conclude that the program is
most likely protected by our obfuscation approach. In particular, if she can run
methods independently, it is even possible to pinpoint the exact method that
has been obfuscated.

7 Discussion

In the following, we discuss potential limitations and shortcomings of our ap-
proach.

7.1 Dynamic Analysis

Our approach aims to transform methods such that multiple traces of the same
function using the same inputs differ, which implies that dynamic deobfuscation
approaches are hampered [9, 10]. Furthermore, this is done to thwart dynamic
analyses operating on multiple executions (like [8]). For example, manual dy-
namic analysis of the obfuscated method is hindered by probabilistic control flow:
an adversary observing the control flow at some fixed point during execution of
the method cannot depend on the program reaching the exactly same point
during a following run. Hence, pausing execution using breakpoints is rendered
unreliable in presence of our obfuscation approach.

Probfuscation: An Obfuscation Approach using Probabilistic Control Flows 21

7.2 Single Trace Analysis

If an adversary knows that our obfuscation scheme is used, the best way to
circumvent it is by resorting to work on a single execution trace. Since the
goal of probabilistic control flow is to make dynamic analyses based on multiple
traces harder, deobfuscation methods operating on one trace are only affected if
a loop is present. We note that algorithms processing the recorded trace dismiss
basic blocks that do not affect the outcome of the method [8–10]. However,
as shown in Section 6.4, during multiple loop iterations, different semantically
equivalent basic blocks can be hit. These blocks may affect the method’s outcome
and thus complicate the resulting trace. As future work, we propose integrating
the obfuscation graph better into the protected method by means of opaque
values. This way it gets harder to dismiss instructions based on their usage of
the obfuscation graph only.

Furthermore, deobfuscation approaches operating on one trace do not per-
form as good in terms of code coverage compared to those using multiple execu-
tion paths. This poses a problem for an adversary who wants to analyze multiple
execution paths in an algorithmic manner in order to understand the obfuscated
program better. Often, multi-path exploration techniques are considered when
tackling this problem [8,10]. This is where our approach proves useful: It intro-
duces a variety of valid, but distinct control flows and works probabilistically.
For an adversary, it is hard to distinguish whether a branch was taken due to
probabilistic control flow or because the function was run with different input.
In order to improve this aspect, we currently work on extending our approach
by inlining the semantics of multiple methods into one method. The semantic
that is actually executed when the method is called is then determined with the
help of the obfuscation graph and opaque predicates.

7.3 Probabilistic Control Flow

The obfuscation graph and its vpaths are an integral component of our approach.
Vpaths are used to select the current control flow through the obfuscated method
and therefore to enable probabilistic control flow. Which vpath is to be used is
decided randomly. In our prototype implementation, the active vpath is chosen
using the PRNG provided by the .NET System namespace. Obviously, this im-
plementation is vulnerable, as the call to the PRNG could be replaced by fixed
values. This reduces probabilistic control flow to a deterministic one.

A straightforward approach to make the random number generation more re-
silient is not to use any external PRNG. Instead, one could insert a PRNG into
the obfuscated method itself and replace the calls to the external PRNG with
code sequences that generate random numbers. This way, the random number
generation is harder to pinpoint by an adversary, especially if multiple, diverse
sequences are inserted. Furthermore, the random number generation can be hid-
den beneath additional layers of obfuscation.

However, even this construct suffers from the problem that it requires an
initial random seed to create different control flows every time it is executed. If

22 Andre Pawlowski, Moritz Contag, and Thorsten Holz

an adversary is able to set this initial random seed to a fixed value, the PRNG in
the obfuscated method generates the same sequence of random numbers every
time the program is executed. This circumstance poses the greatest limitation of
our current implementation. However, due to the huge amount of values that can
be fetched from the operating system that can influence the seed, it is not easy
in practice to fixate them all. For future work, we propose to develop methods
to conceal the retrieval of external states that are used to seed the PRNG and
to transfer the selection of used vpaths through the obfuscation graph from an
external entity to the program (i. e., a server).

7.4 Opaque Predicates

It is possible to create probabilistic control flow with the help of random opaque
predicates. The difficulty resides in creating resilient predicates. Our approach
uses the idea of Collberg et al. [11] to embed a graph structure which is used to
construct resilient opaque predicate based on the hardness of detecting aliases
of the pointer into the graph. A further advantage of our obfuscation scheme is
that this introduces tamper resistance for the probabilistic control flow.

7.5 Other Programming Languages

Although our proof-of-concept implementation uses metadata available to man-
aged code programming languages, the scheme can also be implemented for other
programming languages. In object-oriented programming languages like C++,
the obfuscation graph can be realized by using objects of classes for the nodes
and attributes of the object as properties for the opaque predicates. Further-
more, our obfuscation approach is also not necessarily limited to object-oriented
programming languages either. Generally, our approach requires any program
entity usable for a node in the graph that also contains enough properties to
build opaque predicates (see Section 4). Hence, adopting our obfuscation ap-
proach for other programming languages is merely an engineering effort and not
a design limitation.

8 Related Work

The basic technique our approach is based on is presented in a paper by Collberg
et al. [11]. They propose a method to create opaque constructs based on objects
and pointer aliases. They also suggest a directed graph as concrete data type.
However, their approach is mainly concerned with the creation of cheap, stealthy
and resilient opaque constructs. We extend this approach and focus on the dif-
ferent paths we can insert into a target using their construct. This stems from
the insight that while their technique efficiently makes static analysis harder,
the traces obtained using dynamic analyses are very much the same. This, in
turn, helps in determining the concrete value of an opaque predicate and might
allow to partly reconstruct the control flow of the program.

Probfuscation: An Obfuscation Approach using Probabilistic Control Flows 23

Wang et al. describe a technique to obfuscate a target program using control
flow transformations as well [13]. They transform a method’s CFG in such a way
that a new basic block in the beginning of the method decides which original
basic block is executed next. These control flow decisions are made based on a
state variable which gets updated after every basic block. Similar to the approach
of Collberg et al., they transform the control flow analysis problem into a data
flow analysis problem. However, their approach also merely aims to make static
analysis of an obfuscated program harder.

More recent work focuses on deobfuscation of obfuscated programs [8–10].
All of them have in common that they are based on dynamic analysis. Traces
of the program’s execution are recorded and subsequently used to remove the
applied obfuscation schemes. Approaches working on multiple traces in order to
tackle the code coverage problem [24] of dynamic analysis are challenged by the
probabilistic control flow introduced by our technique.

The recent work of Crane et al. also make use of probabilistic control flow [25].
It enables them to thwart cache side-channel attacks. To this end, they clone
program fragments and transform the clone in order to avoid making an exact
copy. A stub is used to decide randomly if the clone or the original fragment is
executed. Because an attacker has no knowledge about which was executed, it
hampers cache side-channel attacks. Additionally, Davi et al. [26] use probabilis-
tic control flow in combination with fine-grained memory randomization in order
to prevent conventional return-oriented programming (ROP) and JIT (just-in-
time)-ROP attacks. To this end, they clone and diversify the code that is loaded
into memory. Whenever a function is called, their system randomly decides if
the original or cloned function is executed. Once the executed function returns,
the system checks if execution shall continue at the normal or cloned version
of the function caller by adding an offset to the return address. Therefore, an
attacker is not able to precisely predict where execution will resume and cannot
reliably perform a ROP or JIT-ROP attack.

9 Conclusion

In this paper, we introduce a novel approach to obfuscate software, including,
but not limited to, those written in managed code programming languages. The
proposed scheme is based on a construct introduced by Collberg et al. [11]. How-
ever, instead of focusing on protecting the program against static analysis, we
introduce a scheme achieving probabilistic control flow, aiming to make dynamic
analysis harder. This is achieved by embedding an obfuscation graph containing
multiple virtual paths. Based on these paths, opaque predicates are constructed
and added to the target method. Consequently, control flow may take different
paths exhibiting the same observable semantics.

We have implemented a prototype obfuscator for .NET applications and eval-
uated it using multiple programs. The experiments have shown that the obfus-
cated methods do not exhibit the same execution trace after executing it 100
times in a row with the same input. Inevitably, this comes with a significant

24 Andre Pawlowski, Moritz Contag, and Thorsten Holz

performance and memory penalty. Resilience against dynamic analyses thus has
to be weighed up with constraints on time and space. We are confident that the
overhead is still acceptable to protect sensitive parts or proprietary algorithms
of a given program. Since we believe our obfuscation approach provides a new
strategy for tackling dynamic analysis and hence a building block for future re-
search, we are making our obfuscation tool available to the research community
as open source software.

References

1. B. Lee, Y. Kim, and J. Kim, “binOb+: A Framework for Potent and Stealthy
Binary Obfuscation,” in ACM Symposium on Information, Computer and Com-
munications Security (ASIACCS). ACM, 2010, pp. 271–281.

2. Collberg, Christian, “The Tigress C Diversifier/Obfuscator,” http:
//tigress.cs.arizona.edu.

3. Junod, Pascal, “Obfuscator-LLVM,” https://github.com/obfuscator-llvm/
obfuscator/wiki.

4. H. Fang, Y. Wu, S. Wang, and Y. Huang, “Multi-stage Binary Code Obfuscation
using Improved Virtual Machine,” in Information Security. Springer, 2011, pp.
168–181.

5. Oreans Technologies, “Themida: Advanced Windows Software Protection System,”
http://www.oreans.com/themida.php.

6. ——, “Code Virtualizer: Total Obfuscation against Reverse Engineering,” http:
//oreans.com/codevirtualizer.php.

7. VMProtect Software, “VMProtect: Software protection against reversing and
cracking,” http://vmpsoft.com/.

8. B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray, “A Generic Approach
to Automatic Deobfuscation of Executable Code,” in IEEE Symposium on Security
and Privacy (S&P), 2015.

9. K. Coogan, G. Lu, and S. Debray, “Deobfuscation of Virtualization-obfuscated
Software: a Semantics-based Approach,” in ACM Conference on Computer and
Communications Security (CCS), 2011, pp. 275–284.

10. M. Sharif, A. Lanzi, J. Giffin, and W. Lee, “Automatic Reverse Engineering of
Malware Emulators,” in IEEE Symposium on Security and Privacy (S&P), 2009,
pp. 94–109.

11. C. Collberg, C. Thomborson, and D. Low, “Manufacturing Cheap, Resilient, and
Stealthy Opaque Constructs,” in ACM Symposium on Principles of Programming
Languages (POPL), 1998, pp. 184–196.

12. G. Ramalingam, “The Undecidability of Aliasing,” ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), vol. 16, no. 5, pp. 1467–1471, 1994.

13. C. Wang, J. Davidson, J. Hill, and J. Knight, “Protection of Software-Based Sur-
vivability Mechanisms,” in International Conference on Dependable Systems and
Networks, 2001. DSN 2001. IEEE, 2001, pp. 193–202.

14. B. Anckaert, M. Jakubowski, and R. Venkatesan, “Proteus: Virtualization for
Diversified Tamper-Resistance,” in Proceedings of the ACM workshop on Digital
rights management. ACM, 2006, pp. 47–58.

15. Kushner, David, “Steamed: Valve Software Battles Video-game Cheaters,”
http://spectrum.ieee.org/consumer-electronics/gaming/steamed-valve-software-
battles-videogame-cheaters.

Probfuscation: An Obfuscation Approach using Probabilistic Control Flows 25

16. C. Collberg, C. Thomborson, and D. Low, “A Taxonomy of Obfuscating Trans-
formations,” Department of Computer Science, The University of Auckland, New
Zealand, Tech. Rep., 1997.

17. Guy Smith, “Common Compiler Infrastructure: Metadata API,” https://
ccimetadata.codeplex.com/.

18. X. Hu, T.-c. Chiueh, and K. G. Shin, “Large-scale Malware Indexing Using
Function-Call Graphs,” in ACM Conference on Computer and Communications
Security (CCS), 2009, pp. 611–620.

19. P. P. Chan and C. Collberg, “A Method to Evaluate CFG Comparison Algorithms,”
in International Conference on Quality Software (QSIC), 2014, pp. 95–104.

20. Z. Zeng, A. K. Tung, J. Wang, J. Feng, and L. Zhou, “Comparing Stars: On
Approximating Graph Edit Distance,” in International Conference on Very Large
Data Bases (VLDB), 2009.

21. H. Chen, L. Yuan, X. Wu, B. Zang, B. Huang, and P.-c. Yew, “Control Flow Ob-
fuscation with Information Flow Tracking,” in Annual IEEE/ACM International
Symposium on Microarchitecture, 2009.

22. P. Wang, S. Wang, J. Ming, Y. Jiang, and D. Wu, “Translingual Obfuscation,” in
IEEE European Symposium on Security and Privacy (Euro S&P), 2016.

23. I. V. Popov, S. K. Debray, and G. R. Andrews, “Binary Obfuscation Using Signals,”
in USENIX Security Symposium, 2007.

24. A. Moser, C. Kruegel, and E. Kirda, “Exploring Multiple Execution Paths for
Malware Analysis,” in IEEE Symposium on Security and Privacy (S&P). IEEE,
2007, pp. 231–245.

25. S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz, “Thwarting Cache
Side-Channel Attacks Through Dynamic Software Diversity,” in Symposium on
Network and Distributed System Security (NDSS), 2015.

26. L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and F. Monrose, “Isomeron:
Code Randomization Resilient to (Just-In-Time) Return-Oriented Programming,”
in Symposium on Network and Distributed System Security (NDSS), 2015.

26 Andre Pawlowski, Moritz Contag, and Thorsten Holz

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90

Unique Branches MD5
Unique Basic Blocks MD5

Unique Branches RC4
Unique Basic Blocks RC4

Fig. 7. The number of unique basic blocks and branches each trace used ordered by
the number of reached basic blocks. The gray dots depict the used unique branches and
the black dots show the visited unique basic blocks. On the x-axis the trace number is
given. On the y-axis the number of unique basic blocks/unique branches are given.

A Probabilistic Control Flow

Figure 7 shows the number of unique basic blocks visited and unique branches
taken for 100 traces with the same input for the obfuscated MD5 and RC4 al-
gorithm. Like the result of the traces for the SHA-256 algorithm (evaluated in
Section 6.3), the number of visited unique basic blocks and taken unique branches
correlate. If more unique basic blocks were visited, more unique branches were
taken during the execution of the obfuscated method. For the MD5 algorithm,
the smallest trace regarding the number of unique basic blocks reached 45 unique
basic blocks and took 44 unique branches. This is also the smallest trace regard-
ing the number of unique branches. The largest trace regarding the number of
unique basic blocks visited 77 unique basic blocks and used 76 unique branches.
This is also the largest trace regarding the number of unique branches. On av-
erage, each trace used 56 unique basic blocks and 55 unique branches. For the
obfuscated RC4 algorithm, the smallest trace regarding the number of unique
basic blocks reached 27 unique basic blocks and took 27 unique branches. This

Probfuscation: An Obfuscation Approach using Probabilistic Control Flows 27

Table 4. The results of the comparison of the obfuscated method trace with the trace
of the original method for the same input (ID = ID for semantically equivalent basic
blocks, |avail| = number of available semantically equivalent basic blocks, |exec| = to-
tal number of times one of the semantically equivalent basic blocks were visited, |diff|
= number of different semantically equivalent basic blocks executed, |orig| = number
of times the basic block of the original method was visited instead of a semantically
equivalent basic block, Util. = utilization of the reached different semantically equiva-
lent basic blocks with respect to available semantically equivalent basic blocks and the
total number of executions in percent).

ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total

|avail| 9 43 40 30 35 24 22 20 29 18 22 31 25 22 43 23 33 469
|exec| 1 20 1 19 3 1 2 1 34 2 32 98 2 96 130 2 128 572
|diff| 1 10 1 8 3 1 2 1 15 1 10 4 1 4 24 2 20 108
|orig| 0 1 0 6 0 0 0 0 0 0 0 0 0 0 6 0 11 24
Util. 100 50 100 42.1 100 100 100 100 51.7 50 45.5 12.9 50 18.2 55.8 100 60.6 71

SHA-256

ID 0 1 2 3 4 Total

|avail| 6 33 27 20 17 103
|exec| 1 3 1 2 1 8
|diff| 1 3 1 2 1 8
|orig| 0 0 0 0 0 0
Util. 100 100 100 100 100 100

MD5

ID 0 1 2 3 4 Total

|avail| 11 34 18 24 18 105
|exec| 1 101 1 100 1 204
|diff| 1 17 1 12 1 32
|orig| 0 3 0 3 0 6
Util. 100 50 100 50 100 80

RC4

is also the smallest trace regarding the number of unique branches. The largest
trace regarding the number of unique basic blocks and unique branches visited
214 unique basic blocks and used 222 unique branches. On average, 101 unique
basic blocks and 102 unique branches were used by the traces.

As evident from the figure, the numbers for the MD5 algorithm do not have
such a wide range like the obfuscated RC4 algorithm (same figure) or the SHA-
256 algorithm (Figure 6 in Section 6.3). This can be explained by the small
number of iterations the loop in the algorithm passes through with the given
input. The other algorithms have a larger number of iterations during their
execution (the actual numbers are shown in Table 4 of Appendix B).

B Basic Block Utilization

In Table 4, a detailed overview of the results of the comparison of the obfuscated
and original trace is given. The semantically equivalent basic block utilization for

28 Andre Pawlowski, Moritz Contag, and Thorsten Holz

the SHA-256 algorithm ranged from 12.9% to 100%. In total, 71% of the available
semantically equivalent basic blocks were utilized. For the MD5 algorithm, the
utilization always reached 100%. This high utilization is explained by the fact
that the algorithm does not have many iterations for the used input. Therefore,
there is a high probability that always different semantically equivalent basic
blocks are used during the execution. The utilization for the RC4 algorithm
ranged from 50% to 100%. In total, 80% of the semantically equivalent basic
blocks were utilized.

